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INTRODUCTION

Machine learning has become an indispensable
tool for extracting meaningful patterns from

Volume 3, Issue 12, 2025

Abstract

The k-nearest neighbor (k-NN) regression method is widely used due to its
simplicity and flexibility; however, its reliance on mean-based neighborhood
aggregation makes it highly sensitive to outliers, noise, and skewed data
distributions. To address these limitations, this study proposes four robust
extensions of the k-NN regression framework: Median k-NN ensemble
(MKNNE), Winsorized k-NN ensemble (WKNNE), Trimean k-NN ensemble
(TriKNNE), and Trimmed Mean k-NN ensemble (TKNNE). By replacing the
conventional sample mean with robust measures of central tendency, the
proposed methods enhance robustness without sacrificing computational
efficiency. Extensive experiments conducted on ten benchmark datasets with
diverse statistical properties demonstrate that the proposed models consistently
outperform standard kNN, random kNN (RKNN), and optimal k-NN
ensemble (OKNNE) methods across multiple evaluation metrics, including R?,
MSE, MAE, and MAPE. The results show that robust neighborhood
aggregation is an effective strategy for improving k-NN regression, especially in
realaworld scenarios involving noisy and heterogeneous data. This work provides
a robust and extensible framework for neighborhood-based learning.

statistical frameworks for modeling
relationships ~ between  dependent  and

complex and large-scale data. Since the seminal
definition of ML by Samuel [1] as the field that
enables computers to learn without being
explicitly ~ programmed, researchers have
developed a wide range of techniques for data
modeling, prediction, and analysis across
diverse application domains. Broadly, ML
methods are categorized into supervised
learning (SL) and unsupervised learning (UL).
Supervised learning relies on labeled data to
learn  predictive  relationships,
unsupervised learning aims to uncover hidden
structures and patterns from unlabeled data [2-
4].

Regression analysis constitutes a fundamental
component of supervised learning, providing

whereas

independent variables. It plays a critical role in
prediction, forecasting, and, in certain contexts,
causal inference [5, 6]. Classical regression
techniques, such as linear regression, Ridge
regression, and the least absolute shrinkage and
selection operator (LASSO), are widely used
due to their simplicity and interpretability.

However, these methods are inherently
sensitive to outliers, noise, and
multicollinearity, which can significantly
degrade  their  predictive  performance,

particularly in real-world datasets characterized
by heterogeneity and measurement errors [7-9)].
These motivated  the
development of robust, nonparametric learning
methods capable of handling noisy and

limitations  have
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irregular data. The k-nearest neighbor (k-NN)
algorithm is a prominent example of such
approaches. As a nonparametric method, k-NN
estimates the target value of a query instance by
aggregating the responses of its nearest
neighbors in the feature space [10]. Several
variants, including weighted kNN (wk-NN)
[11], random kNN, and bootstrap-based k-NN
ensembles, have been proposed to enhance
predictive performance and reduce sensitivity
to irrelevant features and sampling variability
[12, 13].

Despite these advancements, traditional k-NN
regression typically relies on the arithmetic
mean for neighborhood aggregation, making it
highly sensitive to outliers and extreme
observations within the local neighborhood. To
address this issue, robust statistical estimators
such as the Median, Trimmed mean, Trimean,
and Winsorized Mean have been explored.
These estimators reduce the influence of
anomalous values and are therefore well suited
for constructing robust ensemble regression
models.

Motivated by these observations, the present
study proposes a robust ensemble kNN
regression framework that integrates robust
estimators into the neighborhood aggregation
process and introduces a novel robust method
to further enhance prediction accuracy under
noisy conditions. The proposed approaches are
systematically evaluated against classical k-NN,
random k-NN, and the optimal kNN ensemble
(OKNNE) using multiple performance metrics,
including R%2, MSE, MAE, and MAPE, across a

range of benchmark datasets.

1. Literature review

Regression analysis is a fundamental statistical
technique that has long been employed to
model and estimate relationships between
input and output variables [14]. Classical linear
regression, formally developed by Gauss and
Legendre [15], is computationally efficient and
interpretable; however, it is highly sensitive to
outliers, which can exert a disproportionate
influence on parameter estimates and
significantly degrade model performance. To
address the limitations of parametric regression
models, nonparametric learning approaches
have been extensively explored. Among these,
the nearest neighbor (NN) method, originally

developed in the 1950s [16, 17], later evolved
into the k-nearest neighbor (k-NN) algorithm. k-
NN is an intuitive, instance-based,
nonparametric learning procedure that has
demonstrated strong empirical performance
and asymptotic properties comparable to Bayes
classifiers [18-22]. Owing to its flexibility and
minimal distributional assumptions, k-NN has
been widely applied in both classification and
regression tasks. Several extensions of the k-NN
algorithm have been proposed to enhance both
predictive performance and computational
efficiency. Weighted k-NN assigns distance-
based weights to neighboring observations,
allowing closer instances to exert greater
influence on the prediction [23, 24]. Bootstrap-
enhanced nearest neighbor procedures increase
robustness by artificially enlarging the training
set through resampling techniques [25].
Instance-reduction methods, such as condensed
nearest neighbor (C-NN) [26-28], reduced
nearest neighbor (R-NN) ([29], and class-
conditional instance selection for regression
(CCISR) [30], aim to reduce dataset size while
preserving predictive accuracy, although this is
often achieved at the expense of increased
computational overhead. Model-based kNN
approaches further improve prediction accuracy
by identifying and ignoring irrelevant regions of
the feature space [31]. Additionally, for large-
scale datasets, fast k-NN search frameworks
have been developed to accelerate neighbor
discovery while maintaining prediction quality,
thereby  addressing the  computational
challenges associated with traditional k-NN
methods [32].

Ensemble learning has gained considerable
attention due to its ability to improve predictive
performance and stability by aggregating
multiple weak learners [33]. Prominent
ensemble techniques include boosting [34] and
bagging [35], both of which rely on
independent bootstrap samples to approximate
model expectations and reduce variance [35-
38]. Several refinements of the bagging
framework, including exact bagging, have also
been proposed to further enhance performance
[13]. Random Forests extend the bagging
paradigm by  introducing
randomness during node splitting, which
reduces correlation among trees and helps
mitigate  overfitting [39]. More general

feature-level
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ensemble architectures manipulate data or
models through subsampling, sub-spacing, sub-
classing, or model variation to promote
diversity among base learners [40].

A substantial body of research has incorporated
Ik-NN as the base learner within ensemble
frameworks. These approaches often employ
random feature subsets for each bootstrap
sample [12, 41, 42] and optimize the
neighborhood size parameter k independently
for each base model [43, 44]. Locally linear
ensemble methods [45, 46] and hybrid k-NN
ensembles combined with forward feature
selection [47] have further improved predictive
performance, particularly in high-dimensional
settings [12]. Recent advances emphasize model
selection and adaptive weighting strategies.
Notably, the optimal k-NN ensemble (OKNNE)
(48] integrates bootstrap sampling, random
feature subspaces, and stepwise regression to
reduce the influence of irrelevant predictors.
Variable-k ensemble classifiers, which combine
multiple kNN models using weighted sum
rules, have also demonstrated superior
performance compared to traditional fixed-k
approaches [49]. Additional developments
include multimodal perturbation-based
ensembles  with  heterogeneous  distance
measures and reduced random subspace
bagging (RRSB), which increase classifier
diversity without compromising accuracy [50],
as well as kNN-based outlier detection
frameworks such as two-phase clustering
methods [51]. To further alleviate the adverse
effects of outliers on neighborhood-based
prediction, recent k-NN ensemble models have
progressively incorporated robust aggregation
measures, including the Median, Trimmed
Mean, Trimean, and Winsorized Mean. These
robust estimators provide stable central
tendency estimates, thereby enhancing the
robustness and accuracy of ensemble k-
regression models when applied to noisy and
heterogeneous datasets.

Methodology

This section presents the methodological
framework adopted in this study. The
methodology begins with a brief overview of the
baseline linear regression models, including
simple and multiple linear regression, which
serve as reference predictors for comparative

analysis. Subsequently, methods for identifying
and handling outliers are discussed, followed by
a review of robust statistical estimators
employed in this work, namely the Median,
Trimmed Mean, Winsorized Mean, and
Trimean.

The methodology then introduces
neighborhood-based ensemble learning
techniques, including the classical k-nearest
neighbor (k-NN) regression, random kNN
(RKNN), and the optimal kNN ensemble
(OKNNE), along with the bagging strategy used
to enhance model stability. Building on these
foundations, the proposed robust kNN
regression frameworks are formulated by
integrating  robust estimators into  the
neighborhood aggregation step.

1.1. Linear Regression
One of the simplest tools of predictive
modeling in supervised learning is the use of
linear regression models. Simple linear
regression model is a linear relationship
between a scalar response variable y and one
predictor variable "x". The model can be
written as;

¥ =Bo+Bix
Here, the intercept is denoted by B, and the
slope coefficient by ;. The parameters [, and
1 are usually estimated by minimizing the sum
of squared errors (differences between observed
responses y; and predicted responses ¥;).). The
closed form solution of the least squares
estimates are given by

2i (% — %) (yi —¥) _ _
B = S —%)2 Bo = ¥—BiX

where, X and y are the sample means of the
predictor and response, respectively.

The simple model can be extended to the
multiple linear regression when more than one
input variable is used. In the multivariate case,
the response ¥ is modelled as

¥ = Bo+ Bix1 +Baxy + -+ BpXp,

where, X4, w,Xp  are the predictors and their
coefficients are respectively By, ..., Bp. In matrix
notation, this can be written as § = X, where
Xis then X (p + 1) design matrix (including a
column of ones for the intercept) and @ is the
coefficient vector. The ordinary least squares
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(OLS) solution for the value of @ that

minimizes the sum of squared residues is

B = (XTX) 'XTy,
Provided XX is invertible. This estimator has
the best linear unbiased predictions under
Gauss-Markov assumptions.
For linear regression, an interpretable model is
obtained, and a baseline for comparison.
However, it assumes that the relationship
between predictors and response is linear and
that the residuals are homoscedastic and
normally distributed. The existence of outliers
or non-normal error distribution may lead to a
significant bias in the OLS estimates. The
following section covers methods of detecting
and reducing the effect of outliers.

1.2. Outliers in Regression

OLS is extremely sensitive to outliers and to
high leverage points which may lead to biased
coefficient estimates, to an increase in the value
of the coefficient of determination (R?), and to
a distorted inference. Outliers typically show
themselves in the form of large residual in
diagnostic plots, or influential points. To
reduce their effect, in this work robust
measures are implemented in ensemble
prediction framework based on nearest
neighbour models.

1.3.  Robust Estimation Techniques
Robust statistical estimators give alternative
measures of central tendency or location which
are less influenced by outliers than the
arithmetic mean. In this study, some good
estimators are considered:

1.3.1. Median

The median is defined as

e Ifnisodd

(n+1)

Median = [

e [fniseven

1" term,

Dth t 1]th
Median = -2 e+ I er:H[ ] ],

The median is very stable to outliers.

1.3.2. Winsorized Mean

Suppose X; £ X < x3Z< X
denote the ordered sample of size n. For a
winsorization proportion o € [0.0.5], define

k = [na]
The awinsorized sample is constructed by
replacing the lowest k observation with Xy,
and the highest k observation with X;_:

Xk+1, i<k
le= X k<i<n-—-k
Xn—to» i>n—k

The Winsorized Mean is then defines as:

- _1on w

Xw= L1 X

This estimator minimizes the effect of extreme
values while including all observations, thus

being a robust and efficient measure of central
tendency.

1.3.3. Trimean

The Trimean (TM), also referred to as the
Trimean of Tukey, is a measure of the location
of a probability distribution which is the
weighted mean of the median of a distribution

as well as the two quartiles:

™ = Q1+222+Q3 ’
Here, Q ; and Q ; represent the upper and
lower quartile, respectively and Q , is the

median.

1.3.4. Trimmed mean
Suppose, X1 < x S x3=5-< xp,
denote the ordered sample of size n. For a
trimming proportion o -€ [0.0.5], define

g = [na]
The number of observation removed from each
tail. The o-trimmed sample is obtained by
discarding the lowest g order statistics. The a-
trimmed mean is then defined as;

- 1 n-g
Xr = n-2g Zi:g+1xi

The estimator reduces the influence of extreme
values by excluding a specified proportion of
observation from both tails, making it a robust
alternative to the classical arithmetic mean.

1.4. Nearest-Neighbour Approaches

Nearest-neighbor methods are non-parametric
methods which are based on predicting the
response to a query point using the responses
to the training points that are nearest to the
query point. This section includes discussions
on the standard k-nearest neighbor model and
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two types of ensemble-based classifiers, namely
random k-NN and optimal k-NN ensemble.

1.4.1. Kk-Nearest Neighbour

The k-Nearest Neighbour algorithm makes
predictions by taking the average of the results
of the k training examples, which are closest
(in the feature space) to the query point.For
regression, given a query point X, one identifies
the k observations
{(X(l), y(l))! vy (X(k), y(k))} with smallest
distance to x. The predicted response is then

k
.1
y = ;ZJ’U)-
j=1

Euclidean distance is the most commonly used
distance  but other distance measures
(Manhattan, Mahalanobis, etc.) can be used
depending on the problem.

The parameter k determines the level of
locality of the predictions if k is small, it will
result in capturing fine details (which is
overfitting), and if large, it will smooth the
function (which is under fitting). Euclidean
distance is commonly used, but other metrics
(Manhattan, Mahalanobis, etc.) can be applied
depending on the problem. The parameter k
determines the locality of the prediction: small
k yields a model that can capture fine detail (at
the risk of overfitting), whereas large k
produces a smoother function (at the risk of
underfitting). k -NN is a very easy method, and
doesn't take extreme response value into
consideration very well, because only the
nearest points are used in making the
prediction. Yet, it is vulnerable to the effect of
relevant or irrelevant features or noisy features,
and it struggles with the curse of dimensionality
if the data in hand contains numerous
numbers of dimensions. Finding an
appropriate  k is  crucial, and this
characteristically is done by cross validation.

1.4.2. Random k-NN Ensemble

The random k-NN method is an inspiration of
random forests. Instead of using all features in
every base k-NN model, random k- NN creates
an ensemble of k-NN models, each of which is
trained on a random subset of features and/or
training examples. Each base learner chooses a
random subsets of original features and applies

the standard k-NN algorithm on it. When the
predictions of many such random models are
averaged, the resulting ensemble has reduced
variance and decorrelation of the base models.
This has often had the effect of improving
generalization, and it also increases the sample
robustness when some features are not very
relevant or noisy. This is capable of enhancing
both generalization and robustness, particularly
in cases where certain features are so noisy or
insignificant. The hyperparameters to be tuned
are the number of features to be sampled and
the overall number of base models in the
ensemble.

1.4.3. Optimal kNN Ensemble

The optimal kNN ensemble (OKNNE) is a
more sophisticated ensemble technique, which
attempts to integrate a number of k-NN designs
in the manner that reduces the effects of non-
informative variables. In a single application, a
stepwise regression analysis of the training data
to identify the subset of features that is most
relevant is performed along with each kNN
model in the ensemble.

In other words, given a bootstrap sample or a
subset of data, stepwise feature selection is
applied to select those features, which predict
response best, and a k-NN model is constructed
using these selected features only. Various such
models are constructed, each possibly based on
a dissimilar subset of features. The ensemble
prediction of every model is then averaged to
produce the final prediction of a query point. It
has been demonstrated that this approach
yields the correct result by disregarding
irrelevant features and emphasizing informative
ones. To conclude, OKNNE is an ensemble
averaging approach used to perform feature
selection to enhance predictive accuracy when
there are noisy or redundant features.

1.5. Proposed Robust Ensemble
Aggregation

Assume that the training data = (X, Y) consists
of the response variable Y and a matrix of
features P with “n” rows (observations). It is
required to predict the desired value “y” for X,
assuming that X, is P-dimensional test
observation. The number of bootstrap samples
denoted by the B taken from the training

dataset F = (X, Y). The samples are selected in
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such a way that each one takes into account a
random subset of features P of size th. Each
bootstrap sample selects the k closest
neighbours for X using a distance metric, such
as Euclidean distance. As a result, each
bootstrap sample has become a data matrix Rk
(rh+1).

Let Wj() represent the value of the objective
function that was used to evaluate the model,
and let ILj(.) represent a linear regression model
with j = 0, 1, 2,..., th variables. Rk(th+1) final
model should be referred to as ILj(.). Let yT, (F
=1, 2, ..., B) be the value predicted by the
regression model for X;. In this manner,
estimates of the same test point (X;), which are
B expected  values, are obtained:
V1,2, Y30 - VB

To determine the overall estimate of the test
point, the more robust estimation methods i.e.,
Median, Winsorized Mean, Trimean and
Trimmed Mean of each of these estimated
values is calculated. Based on these estimators,
the following metric is proposed, in order to
robustly estimate response value in the
neighbourhood of a test point. It is defined as;

1 ~
kNN= B ?=1 Vi,

Median:

For even number of observation
MKNNE = Size of {g} th observation.

For odd number of observation
MKNNE = Size of {%} th observation.

Winsorized Mean:
Yin = Yn+1 + Yn+2 - Vin

WKNNE = )
B

Tri Mean:

+ 20, +

TriKNNE = W,

Trimmed Mean:

DAL

TKNNE = —=22—
B-2P

The algorithm for the proposed Robust
Estimation Methods For k-Nearest Neighbours
Ensemble Model is as follows;

1. Take B bootstrap samples from the
training data and, for each sample, randomly
select a subset of d < p features.

2. For each bootstrap sample, apply k-NN
to identify the k nearest neighbour of the test
observation x'.

3. For each bootstrap sample, form a data
matrix My q+1) consisting of the k neighbour
observation (with their responses) and the
corresponding d features.

4, For each Dbootstrap sample b =
1,2,, ..., B, compute a robust estimate of the
response for x' from its neighbourhood:

7O (x)=T P, yb ... y2),

where, T(.) is robust location measure(e.g.,
Median, Trimmed Mean or Winsorized Mean)
applied to the responses of the k neighbours.
5. The final prediction for x' is obtained
by taking the arithmetic mean or average of the
B robust neighborhood prediction

~ I 1 A !
(') =35 9P

Pseudo code of the proposed method is given
in Algorithm 1 and flow chart in Figure 1.

Algorithm 1. Pseudo Code for the Proposed
Method

Input:
p = number of features
B = number of bootstrap learners
k = number of neighbours
T(.) = robust location functional
x' = test point

Forb=1toBdo

e Draw bootstrap sample D®

e  Build kNN model using all p features

e Compute Euclidean distances between
x' and all points

e Identify k nearest neighbours

e Form neighbourhood matrix M® of
dimension k x (p + 1)

e  Extract neighbour responses
b) _ (b b
S V)

e Compute robust prediction:
~(b
o) T (b))
~(b
e Store y((x,)) =T (y(b))
End For
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Pool all B estimates to get final result i.e., P(x") = 1 B_ 9O (x").
5 b=

Training Data F = (X,Y) pxpeny

2

pr— For i=1 to B?

0

Bootstrap sample F = (X,Y) ;1. sy
where

4

‘ Find k-Nearest Observation for x'; ‘

i

' Predict x" using Robust Estimation methods on )
the k-nearest neighbours

U

}. Store Results ‘

TRUE 3

Final Ensemble

Figure 1: Flow chart of the proposed method.

1.6.  Benchmark datasets

A total of 10 datasets are used in order to compare the proposed method with the other state-of-the art
methods. These data sets are in a variety of publicly available sources. The datasets have been briefly
described in Table 1. The table shows the number of observations, number of variables and source.

Table 1: List of benchmark datasets.

Datasets n P Sources of the datasets

http://archive.ics.uci.edu/ml/datasets/concrete+slump+test

Concrete (Con) 103 10

https://www.openml.org/search’type=data&sort=runs&id=531
&status=active

Boston (Bos) 506 14

https://archive.ics.uci.edu/ml/datasets/Real+estate+valuation+d

RealE state (R_est) | 414 7

atatset

https://www.openml.org/search?type=data&sort=runs&id=4139
Andro (Andro) 49 36 2&status=active
https://www.openml.org/search’type=data&sort=runs&id=223
Stock (Stock) 950 10 %2F&status=active
ATP (ATP) 337 417 lslt&tiia tu:v:;flzvt.i(\)]:enml.org search’type=data&sort=runs&id=4147
https://archive.ics.uci.edu/ml/datasets/yacht+hydrodynamics
Yacht (Yat) 308 7
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Datasets n P Sources of the datasets

https://archive.ics.uci.edu/ml/datasets/Wine+Quality

Wine (Wine) 4898 | 12

. 2 _ _ 1

CPU (CPU) 209 9 https: fvwvy‘openml.org/ search’type=data&sort=runs&id=561
Sstatus=active

Chatfield https://www.openml.org/search’type=data&sort=runs&id=695

235 13 .
(Chat) Sstatus=active
2. Experimental Setup

Experiments on all datasets were carried out
based on a unified evaluation procedure. Each
dataset had 70% training and 30% testing and
this was kept the same for all of the
experiments in order to be comparable. For the
proposed method, hyper-parameter values were
chosen fixed as it is simple. A total of B = 100
bootstrap samples were created from the
training data. In contrast to the ensemble
variants that are based on the subsampling of
features, the proposed approach makes use of
the entire set of features in each bootstrap
model. For each of the bootstrap samples, a k-
NN model was built where the neighbourhood
size k = 0.1 x n where n is number of
observations in the training set. For each query
point, the k nearest neighbours were found
using the Euclidean distance. Instead of using

the traditional arithmetic mean of the
neighbour responses the proposed method
computes the prediction within each bootstrap
model using robust statistical estimators (which
reduce the sensitivity to noise and extreme
values). In more detail, the prediction for each
bootstrap model is then derived using one of
the following robust neighbourhood measures
i.e. Media, Trimean, Trimmed Mean and and

Winsorized Mean of the neighbour responses.
These robust estimators is used in the
neighbourhood level regression and have the
benefit of increased stability against local
outliers or heavy tailed distributions. After all
100 bootstrap level predictions are collected,
then a final ensemble prediction for each test
observation is computed by the simple
arithmetic mean:

B
. _ 1IN,
=1

where, ) is the robust neighbourhood
prediction of the b-th bootstrap model. Using
an ensemble level simple average helps to avoid
over shrinkage and retains the traditional
interpretation  together  with
neighbourhood stage robustness.

ensemble

3. Results and Discussion

Tables 25 summarize the predictive
performance of 10 benchmark datasets.
Overall, there are significant improvements in
prediction accuracy in the robust estimators
over the classical mean-based k-NN variants.
The following sections give a detailed
discussion for each performance metric.

Table 2: R* for all datasets using kNN, RKNN, OKNNE, MKNNE, WKNNE, TriKNNE and

TKNNE.

Datasets

Metrics Methods Con  Bost R _est Andro Stock ATP  Yat Wine CPU Chat

kNN 0.403 0.267 0.472 0.383 0980 0.860 0.099 0.011 0.662 0.670
RKNN 0.466 0.679 0.589 0.650 0985 0.876 0.315 0.431 0.796 0.811
OKNNE 0470 0.685 0.642 0511 0977 0.193 0.472 0.254 0.814 0.820
Rz MKNNE 0.770 0.761 0.538 0.367 0976 0.900 0.941 0.027 0.841 0.836
WKNNE 0.775 0.767 0.560 0.364 0.977 0.827 0943 0.067 0.865 0.838
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TriKNNE 0.781 0.767 0.651 0.925

0.987 0.980 0.943 0.071

0.848 0.837

TKNNE  0.778 0.774 0.547 0.377 0977 0.802 0939 0.066 0.859 0.839
Table 3: MSE of all datasets using kNN, RKNN, OKNNE, MKNNE, WKNNE, TriKNNE and
TKNNE.
Datasets
Metrics  Methods Con Bost R est Andro Stock ATP Yat Wine CPU Chat
kNN 34.13 67.64 95.08 1.23 0.868 4179.02 196.30 0.595 8989.16  15.827
RKNN 31.82 0.26 7524 0.69 0.653 51.22 157.00  0.447 525856  9.185
OKNNE 3152 27.60 6642 0.14 0.006  229.32 118.79  0.589 453645  7.659
MSE MKNNE 13,55 19.67 8742 135 1.005 298396 14402 0.762 53.014 325.40
WKNNE  13.33 19.30 81.02 1.36 0.972 5044.95 13317 0.736 45.103 321.64
TriKNNE  12.46 19.18 64.40 0.19 0.551  599.99 13510  0.725 50.662 323.68
TKNNE 13.14 18.64 8541 134 0.982 5950.98 14505 0.730 47.116 319.55
Table 4: MAE of all datasets using k-NN, RKNN, OKNNE, MKNNE, WKNNE, TriKNNE and
TKNNE.
Datasets
Metrics Methods  Con Bost R_est Andro Stock ATP Yat  Wine CPU  Chat
k-NN 427 477 6.08 0.793 0.601 28.581 7.943 0.531 39.006 16.473
RKNN 427 347 6.09 0.604 0.607 32911 6.933 0.445 33411 14.116
OKNNE 424 346 547 0.667 0.745 53.569 8.115 0592 31.718 13.781
MAE  MKNNE 2.89 307 6.14 0.885 0.713 24922 1.630 0.640 5.106 12.833
WKNNE 291 3.10 6.07 0913 0.714 52.719 1.602 0.652 4.823  12.682
TriKNNE 2.80 3.05 5.33 0.289 0.551 10.225 1.580 0.652 5.033 12.791
TKNNE 288 3.04 6.14 0.895 0.718 57.122 1.628 0.651 4956 12.7132
Table 5: MAPE of all datasets using k-NN, RKNN, OKNNE, MKNNE, WKNNE, TriKNNE and
TKNNE.
Datasets
Metrics  Methods Con  Bost R_est Andro  Stock ATP Yat Wine CPU Chat
kNN 1260 2249 17.61 15204 1301 5.785 276.400 9.455  47.269 1704
RKNN 1321 17.62 19.12 11.403 1.320 7.005 77.871 8.035 49333 1399
OKNNE 1293 17.17 1634 11.664 1.615 11.464 1271.660 10.565 46.245 1217.8
MAPE MKNNE  8.09 1521 1843 18944 1.542 5315 28.339 11.293  150.23  100.9
WKNNE 841 1542 1890 19965 1.546 11.842 28.347 11.543  190.1  96.11

https://thesesjournal.com

| Faiz et al., 2025 |

Page 759


https://portal.issn.org/resource/ISSN/3006-7030
https://portal.issn.org/resource/ISSN/3006-7030

Spectrum of Engineering Sciences

ISSN (e) 3007-3138 (p) 3007-312X Volume 3, Issue 12, 2025

TriKNNE  8.06 15.13 1541 5.730 1.194  2.297 27.286 11.535 171.2 98.11
TKNNE 8.21 15.18 18.80 19.121 1.554 12.742  28.991 11.492  200.1 100.9

3.1. R? Analysis

Table 2 indicates that TriKNNE consistently
achieves the highest R* across most datasets,
reflecting superior goodness of fit. For Yacht
dataset R? increases drastically from k-NN =
0.099 and RKNN = 0.315 to TriKNNE =
0.943, showing the great advantage of trimean
based smoothing in the extreme outlier
environment. In the case of Andro dataset,
TriKNNE achieves an extremely high R?,
(0.925) indicating high stability in spite of the
noise and irregular distributions in the dataset.
Similarly for CPU, Boston, and Stock, all
robust estimators outperform traditional
methods confirming that the trimmed,
winsorized or median based estimators
effectively reduce variance inflation from
outliers. These improvements support the fact
that adding robust measures to the
neighbourhood aggregation step provides much
better model generalization.

3.2. MSE Analysis

Results in Table 3 show that the TriKNNE
estimator yields the lowest MSE across nearly
all datasets, further supporting its strong R’
performance. For Concrete dataset, MSE
reduces from 34.13 (kNN) to 1246
(TriKNNE). Yacht dataset shows performance
jump from 196.30 (k-NN) to 13.51 (TriKNNE)
showing reduction in error. Similarly, MSE
decreases from 4179.02 (kNN) to 599.99
(TriKNNE), again highlighting robustness to
heavy-tailed distributions for ATP dataset. This
shows that the proposed estimators consistently
reduce squared errors because trimming or
winsorising effectively suppresses the influence
of  extreme deviations  within the
neighbourhood.

3.3. MAE Analysis

As shown in Table 4 (MAE), robust estimators
consistently outperform the classical k-NN
approach. In particular, TriKNNE vyields the
lowest MAE for the Yacht dataset (1.580
compared to 7.943 for kNN). Similar

improvements are observed for the Stock and

CPU datasets, where robust methods maintain
lower absolute deviations in the presence of
noise. The Wine dataset demonstrates
enhanced stability, although MAPE values vary.
Among all methods, TriKNNE exhibits the
most stable and consistent performance, closely
followed by WKNNE and TKNNE, while
MKNNE remains competitive but slightly
affected by symmetric trimming.

3.4. MAPE Analysis

MAPE is often challenging to interpret due to
its  sensitivity to small denominators;
nevertheless, Table 5 demonstrates substantial
improvements achieved by robust methods. For
the Yacht dataset, TriKNNE markedly
outperforms  all  competing  algorithms,
attaining a MAPE of 2.297 compared with
276.400 for kNN. Similarly, for the Andro
dataset, MAPE is reduced from 15.204 (k-NN)
to 5.730 (TriKNNE). For the Stock dataset,
TriKNNE again achieves the lowest MAPE
(1.194), indicating strong stability in
percentage-based error measures. Although
datasets such as CPU and Chatfield inherently
exhibit higher MAPE values due to scale effects,
the robust estimators perform at least
comparably to, and in some cases better than,
k-NN and its variants.

3.5. Comparative Discussion

Overall results across R?, MSE, MAE, and
MAPE  demonstrate that robust kNN
estimators consistently outperform the standard
mean-based kNN across most datasets,
confirming the sensitivity of classical
neighborhood averaging to outliers. Among the
proposed methods, TriKNNE shows the most
stable and accurate performance, as its joint
weighting of quartiles and the median provides
robustness and efficiency under skewed and
noisy distributions. WKNNE and TKNNE also
yield meaningful improvements, particularly for
heavy-tailed data, while MKNNE remains
competitive ~ when  strong
appropriate but may be less effective otherwise.
Robust estimation proves especially beneficial

trimming  is
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for high-noise datasets such as ATP and Yacht,
leading to consistent reductions across all error
These findings confirm that
replacing the conventional mean with robust
statistical estimators substantially enhances k-

measures.
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Figure 2 Comparative boxplots of MAE, MAPE, R? and MSE for k-NN and its robust variants
(RKNN, OKNNE, MKNNE, WKNNE, TriKNNE, and TKNNE) on the Concrete dataset.
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Figure 11 Comparative boxplots of MAE, MAPE, R? and MSE for k-NN and its robust variants
(RKNN, OKNNE, MKNNE, WKNNE, TriKNNE, and TKNNE) on the Chatfield dataset.

Across the analyzed datasets, TKNNE
consistently  delivers  robust and  high-
performing predictions. For Concrete and
Boston (Figures 1-2), TKNNE produces close
predictions with minimal spread, whereas
traditional methods show greater sensitivity to
heteroscedastic noise. In Real Estate, Andro,
and Stock (Figures 3-5), which feature mixed
distributions, TKNNE demonstrates stability,
while classical approaches exhibit high vertical
variance indicative of larger errors. For ATP,
Yacht, and Wine (Figures 6-8), including the
Yacht dataset where performance gaps are most
pronounced, k-NN and RKNN are affected by
severe outliers, whereas TKNNE remains
insensitive, highlighting its robustness to non-
linear and complex data patterns. Similarly, for
CPU and Chatfield (Figures 9-10), both
irregular datasets, TKNNE boxplots remain
compact with the smallest errors, further

confirming its reliability and effectiveness
across diverse and challenging data conditions.
Boxplot analysis of ten datasets shows TKNNE
achieves the highest R? and lowest errors, with
TriKNNE also outperforming classical k-NN
variants. Traditional methods exhibit higher
variance and more outliers, while the reduced
spread in the proposed methods highlights

their robustness and generalizability.

4. Conclusion

This study introduced four robust extensions of
the k-Nearest Neighbor regression framework
MKNNE, WKNNE, TriKNNE, and TKNNE
designed to address the sensitivity of the
classical k-NN method to outliers, noise, and
skewed  neighborhood  distributions. By
incorporating  robust  central  tendency
estimators in place of the traditional sample

mean, the proposed methods achieved
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significant  improvements in  prediction
accuracy across ten benchmark datasets with
diverse statistical ~characteristics. Empirical
results demonstrated that the robust estimators
consistently outperformed standard kNN,
RKNN, and OKNNE models. Improvements
were observed across all major evaluation
metrics (R?, MSE, MAE, MAPE), with
TriKNNE emerging as the most stable and
accurate estimator overall. Its balanced
integration of median and quartile information
provided increased resistance to extreme values
while maintaining the efficiency required for
high-quality regression predictions. Similarly,
WKNNE and TKNNE showed notable
performance gains, particularly in datasets with
heavy-tailed distributions or irregular noise
patterns. These findings confirm  that
incorporating robust estimation in the
neighborhood aggregation step is an effective
strategy for enhancing k-NN regression. The
practical significance of the proposed methods
is highlighted by datasets such as Yacht, ATP,
and Concrete, demonstrating their utility in
real-world applications where measurement
noise, anomalies, or local irregularities are
common. Beyond predictive accuracy, this work
establishes a foundation for further research on
the role of robustness in neighborhood-based
learning. Future research could explore:
adaptive neighborhood selection techniques,
integration of robust estimators with metric
learning frameworks, hybrid models that jointly
optimize  distance  metrics and  robust
aggregation, and applications to high-
dimensional and domain-specific datasets,
including medical, financial, and
environmental data.

Overall, the proposed robust k-NN estimators
offer a simple yet powerful enhancement to
classical k-NN regression. Their consistent
performance across diverse datasets makes
them practical, reliable, and computationally
efficient tools for predictive modeling in noisy
and heterogeneous data environments.
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