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Abstract 
The k-nearest neighbor (k-NN) regression method is widely used due to its 
simplicity and flexibility; however, its reliance on mean-based neighborhood 
aggregation makes it highly sensitive to outliers, noise, and skewed data 
distributions. To address these limitations, this study proposes four robust 
extensions of the k-NN regression framework: Median k-NN ensemble 
(MKNNE), Winsorized k-NN ensemble (WKNNE), Trimean k-NN ensemble 
(TriKNNE), and Trimmed Mean k-NN ensemble (TKNNE). By replacing the 
conventional sample mean with robust measures of central tendency, the 
proposed methods enhance robustness without sacrificing computational 
efficiency. Extensive experiments conducted on ten benchmark datasets with 
diverse statistical properties demonstrate that the proposed models consistently 
outperform standard k-NN, random k-NN (RKNN), and optimal k-NN 
ensemble (OKNNE) methods across multiple evaluation metrics, including R², 
MSE, MAE, and MAPE. The results show that robust neighborhood 
aggregation is an effective strategy for improving k-NN regression, especially in 
real-world scenarios involving noisy and heterogeneous data. This work provides 
a robust and extensible framework for neighborhood-based learning. 
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INTRODUCTION 
Machine learning has become an indispensable 
tool for extracting meaningful patterns from 
complex and large-scale data. Since the seminal 
definition of ML by Samuel [1] as the field that 
enables computers to learn without being 
explicitly programmed, researchers have 
developed a wide range of techniques for data 
modeling, prediction, and analysis across 
diverse application domains. Broadly, ML 
methods are categorized into supervised 
learning (SL) and unsupervised learning (UL). 
Supervised learning relies on labeled data to 
learn predictive relationships, whereas 
unsupervised learning aims to uncover hidden 
structures and patterns from unlabeled data [2-
4]. 
Regression analysis constitutes a fundamental 
component of supervised learning, providing 

statistical frameworks for modeling 
relationships between dependent and 
independent variables. It plays a critical role in 
prediction, forecasting, and, in certain contexts, 
causal inference [5, 6]. Classical regression 
techniques, such as linear regression, Ridge 
regression, and the least absolute shrinkage and 
selection operator (LASSO), are widely used 
due to their simplicity and interpretability. 
However, these methods are inherently 
sensitive to outliers, noise, and 
multicollinearity, which can significantly 
degrade their predictive performance, 
particularly in real-world datasets characterized 
by heterogeneity and measurement errors [7-9]. 
These limitations have motivated the 
development of robust, nonparametric learning 
methods capable of handling noisy and 
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irregular data. The k-nearest neighbor (k-NN) 
algorithm is a prominent example of such 
approaches. As a nonparametric method, k-NN 
estimates the target value of a query instance by 
aggregating the responses of its nearest 
neighbors in the feature space [10]. Several 
variants, including weighted k-NN (wk-NN) 
[11], random k-NN, and bootstrap-based k-NN 
ensembles, have been proposed to enhance 
predictive performance and reduce sensitivity 
to irrelevant features and sampling variability 
[12, 13]. 
Despite these advancements, traditional k-NN 
regression typically relies on the arithmetic 
mean for neighborhood aggregation, making it 
highly sensitive to outliers and extreme 
observations within the local neighborhood. To 
address this issue, robust statistical estimators 
such as the Median, Trimmed mean, Trimean, 
and Winsorized Mean have been explored. 
These estimators reduce the influence of 
anomalous values and are therefore well suited 
for constructing robust ensemble regression 
models. 
Motivated by these observations, the present 
study proposes a robust ensemble k-NN 
regression framework that integrates robust 
estimators into the neighborhood aggregation 
process and introduces a novel robust method 
to further enhance prediction accuracy under 
noisy conditions. The proposed approaches are 
systematically evaluated against classical k-NN, 
random k-NN, and the optimal k-NN ensemble 
(OKNNE) using multiple performance metrics, 
including R², MSE, MAE, and MAPE, across a 
range of benchmark datasets. 
 
1. Literature review 
Regression analysis is a fundamental statistical 
technique that has long been employed to 
model and estimate relationships between 
input and output variables [14]. Classical linear 
regression, formally developed by Gauss and 
Legendre [15], is computationally efficient and 
interpretable; however, it is highly sensitive to 
outliers, which can exert a disproportionate 
influence on parameter estimates and 
significantly degrade model performance. To 
address the limitations of parametric regression 
models, nonparametric learning approaches 
have been extensively explored. Among these, 
the nearest neighbor (NN) method, originally 

developed in the 1950s [16, 17], later evolved 
into the k-nearest neighbor (k-NN) algorithm. k-
NN is an intuitive, instance-based, 
nonparametric learning procedure that has 
demonstrated strong empirical performance 
and asymptotic properties comparable to Bayes 
classifiers [18-22]. Owing to its flexibility and 
minimal distributional assumptions, k-NN has 
been widely applied in both classification and 
regression tasks. Several extensions of the k-NN 
algorithm have been proposed to enhance both 
predictive performance and computational 
efficiency. Weighted k-NN assigns distance-
based weights to neighboring observations, 
allowing closer instances to exert greater 
influence on the prediction [23, 24]. Bootstrap-
enhanced nearest neighbor procedures increase 
robustness by artificially enlarging the training 
set through resampling techniques [25]. 
Instance-reduction methods, such as condensed 
nearest neighbor (C-NN) [26-28], reduced 
nearest neighbor (R-NN) [29], and class-
conditional instance selection for regression 
(CCISR) [30], aim to reduce dataset size while 
preserving predictive accuracy, although this is 
often achieved at the expense of increased 
computational overhead. Model-based k-NN 
approaches further improve prediction accuracy 
by identifying and ignoring irrelevant regions of 
the feature space [31]. Additionally, for large-
scale datasets, fast k-NN search frameworks 
have been developed to accelerate neighbor 
discovery while maintaining prediction quality, 
thereby addressing the computational 
challenges associated with traditional k-NN 
methods [32]. 
Ensemble learning has gained considerable 
attention due to its ability to improve predictive 
performance and stability by aggregating 
multiple weak learners [33]. Prominent 
ensemble techniques include boosting [34] and 
bagging [35], both of which rely on 
independent bootstrap samples to approximate 
model expectations and reduce variance [35-
38]. Several refinements of the bagging 
framework, including exact bagging, have also 
been proposed to further enhance performance 
[13]. Random Forests extend the bagging 
paradigm by introducing feature-level 
randomness during node splitting, which 
reduces correlation among trees and helps 
mitigate overfitting [39]. More general 
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ensemble architectures manipulate data or 
models through subsampling, sub-spacing, sub-
classing, or model variation to promote 
diversity among base learners [40]. 
A substantial body of research has incorporated 
k-NN as the base learner within ensemble 
frameworks. These approaches often employ 
random feature subsets for each bootstrap 
sample [12, 41, 42] and optimize the 
neighborhood size parameter k independently 
for each base model [43, 44]. Locally linear 
ensemble methods [45, 46] and hybrid k-NN 
ensembles combined with forward feature 
selection [47] have further improved predictive 
performance, particularly in high-dimensional 
settings [12]. Recent advances emphasize model 
selection and adaptive weighting strategies. 
Notably, the optimal k-NN ensemble (OKNNE) 
[48] integrates bootstrap sampling, random 
feature subspaces, and stepwise regression to 
reduce the influence of irrelevant predictors. 
Variable-k ensemble classifiers, which combine 
multiple k-NN models using weighted sum 
rules, have also demonstrated superior 
performance compared to traditional fixed-k 
approaches [49]. Additional developments 
include multimodal perturbation-based 
ensembles with heterogeneous distance 
measures and reduced random subspace 
bagging (RRSB), which increase classifier 
diversity without compromising accuracy [50], 
as well as k-NN–based outlier detection 
frameworks such as two-phase clustering 
methods [51]. To further alleviate the adverse 
effects of outliers on neighborhood-based 
prediction, recent k-NN ensemble models have 
progressively incorporated robust aggregation 
measures, including the Median, Trimmed 
Mean, Trimean, and Winsorized Mean. These 
robust estimators provide stable central 
tendency estimates, thereby enhancing the 
robustness and accuracy of ensemble k- 
regression models when applied to noisy and 
heterogeneous datasets. 
 
Methodology 
This section presents the methodological 
framework adopted in this study. The 
methodology begins with a brief overview of the 
baseline linear regression models, including 
simple and multiple linear regression, which 
serve as reference predictors for comparative 

analysis. Subsequently, methods for identifying 
and handling outliers are discussed, followed by 
a review of robust statistical estimators 
employed in this work, namely the Median, 
Trimmed Mean, Winsorized Mean, and 
Trimean. 
The methodology then introduces 
neighborhood-based ensemble learning 
techniques, including the classical k-nearest 
neighbor (k-NN) regression, random k-NN 
(RKNN), and the optimal k-NN ensemble 
(OKNNE), along with the bagging strategy used 
to enhance model stability. Building on these 
foundations, the proposed robust k-NN 
regression frameworks are formulated by 
integrating robust estimators into the 
neighborhood aggregation step. 
 
1.1. Linear Regression 
One of the simplest tools of predictive 
modeling in supervised learning is the use of 
linear regression models. Simple linear 
regression model is a linear relationship 
between a scalar response variable y and one 
predictor variable "x". The model can be 
written as; 

ŷ = β0 + β1x, 
Here, the intercept is denoted by  β0 and the 
slope coefficient by  β1. The parameters β0 and 
β1 are usually estimated by minimizing the sum 
of squared errors (differences between observed 
responses yi and predicted responses ŷi).). The 
closed form solution of the least squares 
estimates are given by 
 

β1   =  
∑ (xi − x‾)i (yi − y‾)

∑ (xi − x‾)2
i

, β0   =   y‾ − β1x‾, 

 
where, x‾ and y‾ are the sample means of the 
predictor and response, respectively. 
The simple model can be extended to the 
multiple linear regression when more than one 
input variable is used. In the multivariate case, 
the response ŷ is modelled as 

ŷ   =   β0 + β1x1 + β2x2 + ⋯ + βpxp, 
where, x1, … , xp  are the predictors and their 
coefficients are respectively β1, … , βp. In matrix 
notation, this can be written as 𝐲̂ = 𝐗𝛃, where 
𝐗 is the n × (p + 1)  design matrix (including a 
column of ones for the intercept) and 𝛃 is the 
coefficient vector. The ordinary least squares 
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(OLS) solution for the value of 𝛃 that 
minimizes the sum of squared residues is 
 

𝛃  =   (𝐗T𝐗)
−1

𝐗T𝐲, 
Provided 𝐗T𝐗 is invertible. This estimator has 
the best linear unbiased predictions under 
Gauss-Markov assumptions. 
For linear regression, an interpretable model is 
obtained, and a baseline for comparison. 
However, it assumes that the relationship 
between predictors and response is linear and 
that the residuals are homoscedastic and 
normally distributed. The existence of outliers 
or non-normal error distribution may lead to a 
significant bias in the OLS estimates. The 
following section covers methods of detecting 
and reducing the effect of outliers. 
 
1.2. Outliers in Regression 
OLS is extremely sensitive to outliers and to 
high leverage points which may lead to biased 
coefficient estimates, to an increase in the value 
of the coefficient of determination (R2), and to 
a distorted inference. Outliers typically show 
themselves in the form of large residual in 
diagnostic plots, or influential points. To 
reduce their effect, in this work robust 
measures are implemented in ensemble 
prediction framework based on nearest 
neighbour models. 
 
1.3. Robust Estimation Techniques 
Robust statistical estimators give alternative 
measures of central tendency or location which 
are less influenced by outliers than the 
arithmetic mean. In this study, some good 
estimators are considered: 
1.3.1. Median 
The median is defined as 

• If n is odd 
 

Median = [
(n+1)

2
]th term, 

• If n is even 
 

Median =
[(

𝐧

𝟐
)𝐭𝐡 𝐭𝐞𝐫𝐦 + [1]𝐭𝐡]

𝟐
 , 

The median is very stable to outliers. 
1.3.2. Winsorized Mean 
Suppose x1    ≤   x2      ≤  x3 ≤ ⋯ ≤    xn 
denote the ordered sample of size n. For a 
winsorization proportion α ⋲ [0.0.5], define  

k = [nα] 
The α-winsorized sample is constructed by 
replacing the lowest k observation with xk+1 
and the highest k observation with x(n−k): 
 

𝑥𝑖
𝑊={

𝑥𝑘+1,                       𝑖 ≤ 𝑘
             𝑥𝑖,                   𝑘 ≤ 𝑖 ≤ 𝑛 − 𝑘      

𝑥𝑛−𝑘 ,                𝑖 > 𝑛 − 𝑘
 

 
The Winsorized Mean is then defines as: 

𝑥̅𝑊=
1

𝑛
∑ 𝑥𝑖

𝑊𝑛
𝑖=1 . 

This estimator minimizes the effect of extreme 
values while including all observations, thus 
being a robust and efficient measure of central 
tendency. 
 
1.3.3. Trimean 
The Trimean (TM), also referred to as the 
Trimean of Tukey, is a measure of the location 
of a probability distribution which is the 
weighted mean of the median of a distribution 
as well as the two quartiles: 

𝑇𝑀 =
𝑄1+2𝑄2+𝑄3

4
  , 

Here, Q 1 and Q 3 represent the upper and 
lower quartile, respectively and Q 2 is the 
median. 
 
1.3.4. Trimmed mean 
Suppose, 𝑥1    ≤   𝑥2   ≤  𝑥3 ≤ ⋯ ≤    𝑥𝑛 
denote the ordered sample of size n. For a 
trimming proportion α ⋲ [0.0.5], define  

𝑔 = [𝑛𝛼] 
The number of observation removed from each 
tail. The α-trimmed sample is obtained by 
discarding the lowest 𝑔 order statistics. The α-
trimmed mean is then defined as;      

𝑥̅𝑇 = 
1

𝑛−2𝑔
∑ 𝑥𝑖

𝑛−𝑔
𝑖=𝑔+1  

The estimator reduces the influence of extreme 
values by excluding a specified proportion of 
observation from both tails, making it a robust 
alternative to the classical arithmetic mean. 
 
1.4. Nearest-Neighbour Approaches 
Nearest-neighbor methods are non-parametric 
methods which are based on predicting the 
response to a query point using the responses 
to the training points that are nearest to the 
query point. This section includes discussions 
on the standard k-nearest neighbor model and 
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two types of ensemble-based classifiers, namely 
random k-NN and optimal k-NN ensemble. 
 
1.4.1. 𝐤-Nearest Neighbour 
The 𝑘-Nearest Neighbour algorithm makes 
predictions by taking the average of the results 
of the  𝑘 training examples, which are closest 
(in the feature space) to the query point.For 
regression, given a query point 𝑥, one identifies 
the 𝑘 observations 
{(𝑥(1), 𝑦(1)), … , (𝑥(𝑘), 𝑦(𝑘))} with smallest 
distance to 𝑥. The predicted response is then 

𝑦̂   =  
1

𝑘
∑ 𝑦(𝑗)

𝑘

𝑗=1

. 

 
Euclidean distance is the most commonly used 
distance but other distance measures 
(Manhattan, Mahalanobis, etc.) can be used 
depending on the problem. 
The parameter  𝑘 determines the level of 
locality of the predictions if  𝑘 is small, it will 
result in capturing fine details (which is 
overfitting), and if large, it will smooth the 
function (which is under fitting). Euclidean 
distance is commonly used, but other metrics 
(Manhattan, Mahalanobis, etc.) can be applied 
depending on the problem. The parameter 𝑘 
determines the locality of the prediction: small 
𝑘 yields a model that can capture fine detail (at 
the risk of overfitting), whereas large 𝑘 
produces a smoother function (at the risk of 
underfitting). 𝑘 -NN is a very easy method, and 
doesn't take extreme response value into 
consideration very well, because only the 
nearest points are used in making the 
prediction. Yet, it is vulnerable to the effect of 
relevant or irrelevant features or noisy features, 
and it struggles with the curse of dimensionality 
if the data in hand contains numerous 
numbers of dimensions. Finding an 
appropriate 𝑘 is crucial, and this 
characteristically is done by cross validation. 
 
1.4.2. Random k-NN Ensemble 
The random 𝑘-NN method is an inspiration of 
random forests. Instead of using all features in 
every base 𝑘-NN model, random 𝑘- NN creates 
an ensemble of 𝑘-NN models, each of which is 
trained on a random subset of features and/or 
training examples. Each base learner chooses a 
random subsets of original features and applies 

the standard k-NN algorithm on it. When the 
predictions of many such random models are 
averaged, the resulting ensemble has reduced 
variance and decorrelation of the base models. 
This has often had the effect of improving 
generalization, and it also increases the sample 
robustness when some features are not very 
relevant or noisy. This is capable of enhancing 
both generalization and robustness, particularly 
in cases where certain features are so noisy or 
insignificant. The hyperparameters to be tuned 
are the number of features to be sampled and 
the overall number of base models in the 
ensemble. 
 
1.4.3. Optimal k-NN Ensemble 
The optimal k-NN ensemble (OkNNE) is a 
more sophisticated ensemble technique, which 
attempts to integrate a number of k-NN designs 
in the manner that reduces the effects of non-
informative variables. In a single application, a 
stepwise regression analysis of the training data 
to identify the subset of features that is most 
relevant is performed along with each k-NN 
model in the ensemble. 
In other words, given a bootstrap sample or a 
subset of data, stepwise feature selection is 
applied to select those features, which predict 
response best, and a k-NN model is constructed 
using these selected features only. Various such 
models are constructed, each possibly based on 
a dissimilar subset of features. The ensemble 
prediction of every model is then averaged to 
produce the final prediction of a query point. It 
has been demonstrated that this approach 
yields the correct result by disregarding 
irrelevant features and emphasizing informative 
ones. To conclude, OKNNE is an ensemble 
averaging approach used to perform feature 
selection to enhance predictive accuracy when 
there are noisy or redundant features. 
 
1.5. Proposed Robust Ensemble 
Aggregation 
Assume that the training data Ꞙ= (X, Y) consists 
of the response variable Y and a matrix of 
features Ṕ with “n” rows (observations). It is 
required to predict the desired value “y” for 𝑋0 
assuming that 𝑋0  is Ṕ-dimensional test 
observation. The number of bootstrap samples 
denoted by the Ḃ taken from the training 
dataset Ꞙ = (X, Y). The samples are selected in 
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such a way that each one takes into account a 
random subset of features Ṕ of size ḿ.  Each 
bootstrap sample selects the k closest 
neighbours for 𝑋0 using a distance metric, such 
as Euclidean distance. As a result, each 
bootstrap sample has become a data matrix Ṙk 
(ḿ+1).  
Let Ẁj(.) represent the value of the objective 
function that was used to evaluate the model, 
and let Ỻj(.) represent a linear regression model 
with j = 0, 1, 2,..., ḿ variables. Ṙk(ḿ+1) final 
model should be referred to as Ỻj(.). Let ẙṙ, (ṙ 
= 1, 2, ..., B) be the value predicted by the 
regression model for 𝑋0. In this manner, 
estimates of the same test point (𝑋0), which are 
B expected values, are obtained: 
ẙ1, ẙ2, ẙ3, … . , ẙ𝐵. 
To determine the overall estimate of the test 
point, the more robust estimation methods i.e., 
Median, Winsorized Mean, Trimean and 
Trimmed Mean of each of these estimated 
values is calculated. Based on these estimators, 
the following metric is proposed, in order to 
robustly estimate response value in the 
neighbourhood of a test point. It is defined as; 

k-NN=
1

𝐵
∑ 𝑦̂𝑖

𝐵
𝑖=1  ,               

 
Median: 
         For even number of observation  

𝑀𝐾𝑁𝑁𝐸 = 𝑆𝑖𝑧𝑒 𝑜𝑓 {
𝐵

2
} 𝑡ℎ 𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛.

            
          For odd number of observation 

𝑀𝐾𝑁𝑁𝐸 = 𝑆𝑖𝑧𝑒 𝑜𝑓 {
𝐵+1

2
} 𝑡ℎ 𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛.          

Winsorized Mean: 

𝑊𝐾𝑁𝑁𝐸 =
𝑦̂𝑖𝑛 … . 𝑦̂𝑛+1 + 𝑦̂𝑛+2 … 𝑦̂𝑖𝑛

𝐵
 , 

 
Tri Mean: 

𝑇𝑟𝑖𝐾𝑁𝑁𝐸 =
𝑄1 + 2𝑄2 + 𝑄3

4
, 

Trimmed Mean: 

𝑇𝐾𝑁𝑁𝐸 =  
∑ 𝑦̂𝑖

𝐵+𝑝
𝑖=𝑝+1

𝐵−2𝑃
 , 

 
The algorithm for the proposed Robust 
Estimation Methods For k-Nearest Neighbours 
Ensemble Model is as follows; 
1. Take B bootstrap samples from the 
training data and, for each sample, randomly 
select a subset of d < p features. 

2. For each bootstrap sample, apply k-NN 
to identify the k nearest neighbour of the test 
observation x'. 
3. For each bootstrap sample, form a data 
matrix 𝑀𝑘⨯(𝑑+1) consisting of the k neighbour 
observation (with their responses) and the 
corresponding d features. 
4. For each bootstrap sample 𝑏 =
1,2, , … , 𝐵, compute a robust estimate of the 
response for x' from its neighbourhood: 
 

𝑦̂(𝑏) (𝑥′)=𝑇  (𝑦1
𝑏  ,  𝑦2

𝑏  ,……… , 𝑦2
𝑏  ), 

 
where, T(.) is robust location measure(e.g., 
Median, Trimmed Mean or Winsorized Mean) 
applied to the responses of the 𝑘  neighbours. 
5. The final prediction for x' is obtained 
by taking the arithmetic mean or average of the 
B robust neighborhood prediction 

𝑦̂(𝑥′) =
1

𝐵
∑ 𝑦̂(𝑏)𝐵

𝑏=1 (𝑥′). 

 
Pseudo code of the proposed method is given 
in Algorithm 1 and flow chart in Figure 1. 
 
Algorithm 1. Pseudo Code for the Proposed 
Method  
 
Input: 
    p = number of features 
    B = number of bootstrap learners 
    k = number of neighbours 
    T(.) = robust location functional 
    x' = test point 
 
For b = 1 to B do 
 

• Draw bootstrap sample 𝐷(𝑏) 
• Build k-NN model using all p features 
• Compute Euclidean distances between   

x' and all points 
• Identify k nearest neighbours 
• Form neighbourhood matrix  𝑀(𝑏) of 

dimension k × (p + 1) 
• Extract neighbour responses 

{𝑦1
(𝑏), 𝑦2

(𝑏)
,..., 𝑦𝑘

(𝑏))} 
• Compute robust prediction: 

                 𝑦̂(𝑥′)
(𝑏)  =𝑇(𝑦(𝑏)) 

• Store  𝑦̂(𝑥′)
(𝑏)  =𝑇(𝑦(𝑏)) 

End For 
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Pool all B estimates to get final result i.e.,  𝑦̂(𝑥′) = 
1

𝐵
∑ 𝑦̂(𝑏)𝐵

𝑏=1 (𝑥′). 

 
Figure 1: Flow chart of the proposed method. 

 
1.6. Benchmark datasets 
A total of 10 datasets are used in order to compare the proposed method with the other state-of-the art 
methods. These data sets are in a variety of publicly available sources. The datasets have been briefly 
described in Table 1. The table shows the number of observations, number of variables and source. 
 
Table 1: List of benchmark datasets. 

Datasets n P Sources of the datasets 

Concrete (Con) 103 10 
http://archive.ics.uci.edu/ml/datasets/concrete+slump+test  

Boston (Bos) 506 14 
https://www.openml.org/search?type=data&sort=runs&id=531
&status=active 

RealE state (R_est) 414 7 
https://archive.ics.uci.edu/ml/datasets/Real+estate+valuation+d
ata+set 

Andro (Andro) 49 36 
https://www.openml.org/search?type=data&sort=runs&id=4139
2&status=active 

Stock (Stock) 950 10 
https://www.openml.org/search?type=data&sort=runs&id=223
%2F&status=active 

ATP (ATP) 337 417 
https://www.openml.org/search?type=data&sort=runs&id=4147
5&status=active 

Yacht (Yat) 308 7 
https://archive.ics.uci.edu/ml/datasets/yacht+hydrodynamics  

https://portal.issn.org/resource/ISSN/3006-7030
https://portal.issn.org/resource/ISSN/3006-7030
http://archive.ics.uci.edu/ml/datasets/concrete+slump+test
https://www.openml.org/search?type=data&sort=runs&id=531&status=active
https://www.openml.org/search?type=data&sort=runs&id=531&status=active
https://archive.ics.uci.edu/ml/datasets/Real+estate+valuation+data+set
https://archive.ics.uci.edu/ml/datasets/Real+estate+valuation+data+set
https://www.openml.org/search?type=data&sort=runs&id=41392&status=active
https://www.openml.org/search?type=data&sort=runs&id=41392&status=active
https://www.openml.org/search?type=data&sort=runs&id=223%2F&status=active
https://www.openml.org/search?type=data&sort=runs&id=223%2F&status=active
https://www.openml.org/search?type=data&sort=runs&id=41475&status=active
https://www.openml.org/search?type=data&sort=runs&id=41475&status=active
https://archive.ics.uci.edu/ml/datasets/yacht+hydrodynamics
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Datasets n P Sources of the datasets 

Wine (Wine) 4898 12 
https://archive.ics.uci.edu/ml/datasets/Wine+Quality  

CPU (CPU) 209 9 
https://www.openml.org/search?type=data&sort=runs&id=561
&status=active 

Chatfield 
(Chat) 

235 13 
https://www.openml.org/search?type=data&sort=runs&id=695
&status=active 

 
2. Experimental Setup 
Experiments on all datasets were carried out 
based on a unified evaluation procedure. Each 
dataset had 70% training and 30% testing and 
this was kept the same for all of the 
experiments in order to be comparable. For the 
proposed method, hyper-parameter values were 
chosen fixed as it is simple. A total of B = 100 
bootstrap samples were created from the 
training data. In contrast to the ensemble 
variants that are based on the subsampling of 
features, the proposed approach makes use of 
the entire set of features in each bootstrap 
model. For each of the bootstrap samples, a k-
NN model was built where the neighbourhood 
size k = 0.1 x n where n is number of 
observations in the training set. For each query 
point, the k nearest neighbours were found 
using the Euclidean distance. Instead of using  
the traditional arithmetic mean of the 
neighbour responses the proposed method 
computes the prediction within each bootstrap 
model using robust statistical estimators (which 
reduce the sensitivity to noise and extreme 
values). In more detail, the prediction for each 
bootstrap model is then derived using one of 
the following robust neighbourhood measures 
i.e. Media, Trimean, Trimmed Mean and and  

 
Winsorized Mean of the neighbour responses. 
These robust estimators is used in the 
neighbourhood level regression and have the 
benefit of increased stability against local 
outliers or heavy tailed distributions. After all 
100 bootstrap level predictions are collected, 
then a final ensemble prediction for each test 
observation is computed by the simple 
arithmetic mean: 

𝑦̂   =  
1

𝐵
∑ 𝑦̂(𝑏)

𝐵

𝐼=1

. 

where, 𝑦̂(𝑏) is the robust neighbourhood 
prediction of the b-th bootstrap model. Using 
an ensemble level simple average helps to avoid 
over shrinkage and retains the traditional 
ensemble interpretation together with 
neighbourhood stage robustness.  
 
3. Results and Discussion 
Tables 2-5 summarize the predictive 
performance of 10 benchmark datasets. 
Overall, there are significant improvements in 
prediction accuracy in the robust estimators 
over the classical mean-based k-NN variants. 
The following sections give a detailed 
discussion for each performance metric.

 
Table 2: R2 for all datasets using k-NN, RKNN, OKNNE, MKNNE, WKNNE, TriKNNE and 
TKNNE. 

Datasets 

Metrics Methods Con Bost R_est Andro Stock ATP Yat Wine CPU Chat 

 k-NN 0.403 0.267 0.472 0.383 0.980 0.860 0.099 0.011 0.662 0.670 

 RKNN 0.466 0.679 0.589 0.650 0.985 0.876 0.315 0.431 0.796 0.811 

 OKNNE 0.470 0.685 0.642 0.511 0.977 0.193 0.472 0.254 0.814 0.820 

     R² MKNNE 0.770 0.761 0.538 0.367 0.976 0.900 0.941 0.027 0.841 0.836 

 WKNNE 0.775 0.767 0.560 0.364 0.977 0.827 0.943 0.067 0.865 0.838 

https://portal.issn.org/resource/ISSN/3006-7030
https://portal.issn.org/resource/ISSN/3006-7030
https://archive.ics.uci.edu/ml/datasets/Wine+Quality
https://www.openml.org/search?type=data&sort=runs&id=561&status=active
https://www.openml.org/search?type=data&sort=runs&id=561&status=active
https://www.openml.org/search?type=data&sort=runs&id=695&status=active
https://www.openml.org/search?type=data&sort=runs&id=695&status=active
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 TriKNNE 0.781 0.767 0.651 0.925 0.987 0.980 0.943 0.071 0.848 0.837 

 TKNNE 0.778 0.774 0.547 0.377 0.977 0.802 0.939 0.066 0.859 0.839 

Table 3: MSE of all datasets using k-NN, RKNN, OKNNE, MKNNE, WKNNE, TriKNNE and 
TKNNE. 

Datasets 

Metrics Methods Con Bost R_est  Andro Stock ATP Yat Wine   CPU Chat 

 k-NN 34.13 67.64 95.08  1.23 0.868 4179.02 196.30 0.595 8989.16 15.827 

 RKNN 31.82 0.26 75.24  0.69 0.653 51.22 157.00 0.447 5258.56 9.285 

 OKNNE 31.52 27.60 66.42  0.14 0.006 229.32 118.79 0.589 4536.45 7.659 

 MSE MKNNE 13.55 19.67 87.42  1.35 1.005 2983.96 14.402 0.762 53.014 325.40 

 WKNNE 13.33 19.30 81.02  1.36 0.972 5044.95 13.317 0.736 45.103 321.64 

 TriKNNE 12.46 19.18 64.40  0.19 0.551 599.99 13.510 0.725 50.662 323.68 

 TKNNE 13.14 18.64 85.41  1.34 0.982 5950.98 14.505 0.730 47.116 319.55 

 
Table 4: MAE of all datasets using k-NN, RKNN, OKNNE, MKNNE, WKNNE, TriKNNE and 
TKNNE. 

Datasets 

Metrics Methods Con Bost R_est Andro Stock ATP Yat Wine CPU Chat 

 k-NN 4.27 4.77 6.08 0.793 0.601 28.581 7.943 0.531 39.006 16.473 

 RKNN 4.27 3.47 6.09 0.604 0.607 32.911 6.933 0.445 33.411 14.116 

 OKNNE 4.24 3.46 5.47 0.667 0.745 53.569 8.115 0.592 31.718 13.781 

 MAE MKNNE 2.89 3.07 6.14 0.885 0.713 24.922 1.630 0.640 5.106 12.833 

 WKNNE 2.91 3.10 6.07 0.913 0.714 52.719 1.602 0.652 4.823 12.682 

 TriKNNE 2.80 3.05 5.33 0.289 0.551 10.225 1.580 0.652 5.033 12.791 

 TKNNE 2.88 3.04 6.14 0.895 0.718 57.122 1.628 0.651 4.956 12.732 

 
Table 5: MAPE of all datasets using k-NN, RKNN, OKNNE, MKNNE, WKNNE, TriKNNE and 
TKNNE. 

Datasets 

Metrics Methods Con Bost R_est Andro Stock ATP Yat Wine CPU Chat 

 k-NN 12.60 22.49 17.61 15.204 1.301 5.785 276.400 9.455 47.269 170.4 

 RKNN 13.21 17.62 19.12 11.403 1.320 7.005 77.871 8.035 49.333 139.9 

 
   

OKNNE 12.93 17.17 16.34 11.664 1.615 11.464 1271.660 10.565 46.245 127.8 

 MAPE MKNNE 8.09 15.21 18.43 18.944 1.542 5.315 28.339 11.293 150.23 100.9 

 WKNNE 8.41 15.42 18.90 19.965 1.546 11.842 28.347 11.543  190.1 96.11 

https://portal.issn.org/resource/ISSN/3006-7030
https://portal.issn.org/resource/ISSN/3006-7030
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3.1. R² Analysis 
Table 2 indicates that TriKNNE consistently 
achieves the highest R2 across most datasets, 
reflecting superior goodness of fit. For Yacht 
dataset 𝑅2 increases drastically from k-NN = 
0.099 and RKNN = 0.315 to TriKNNE = 
0.943, showing the great advantage of trimean 
based smoothing in the extreme outlier 
environment. In the case of Andro dataset, 
TriKNNE achieves an extremely high 𝑅2, 
(0.925) indicating high stability in spite of the 
noise and irregular distributions in the dataset. 
Similarly for CPU, Boston, and Stock, all 
robust estimators out-perform traditional 
methods confirming that the trimmed, 
winsorized or median based estimators 
effectively reduce variance inflation from 
outliers. These improvements support the fact 
that adding robust measures to the 
neighbourhood aggregation step provides much 
better model generalization. 
 
3.2. MSE Analysis 
Results in Table 3 show that the TriKNNE 
estimator yields the lowest MSE across nearly 
all datasets, further supporting its strong R2 
performance. For Concrete dataset, MSE 
reduces from 34.13 (k-NN) to 12.46 
(TriKNNE). Yacht dataset shows performance 
jump from 196.30 (k-NN) to 13.51 (TriKNNE) 
showing reduction in error. Similarly, MSE 
decreases from 4179.02 (k-NN) to 599.99 
(TriKNNE), again highlighting robustness to 
heavy-tailed distributions for ATP dataset. This 
shows that the proposed estimators consistently 
reduce squared errors because trimming or 
winsorising effectively suppresses the influence 
of extreme deviations within the 
neighbourhood. 
 
3.3. MAE Analysis 
As shown in Table 4 (MAE), robust estimators 
consistently outperform the classical k-NN 
approach. In particular, TriKNNE yields the 
lowest MAE for the Yacht dataset (1.580 
compared to 7.943 for k-NN). Similar 
improvements are observed for the Stock and 

CPU datasets, where robust methods maintain 
lower absolute deviations in the presence of 
noise. The Wine dataset demonstrates 
enhanced stability, although MAPE values vary. 
Among all methods, TriKNNE exhibits the 
most stable and consistent performance, closely 
followed by WKNNE and TKNNE, while 
MKNNE remains competitive but slightly 
affected by symmetric trimming. 
 
3.4. MAPE Analysis 
MAPE is often challenging to interpret due to 
its sensitivity to small denominators; 
nevertheless, Table 5 demonstrates substantial 
improvements achieved by robust methods. For 
the Yacht dataset, TriKNNE markedly 
outperforms all competing algorithms, 
attaining a MAPE of 2.297 compared with 
276.400 for k-NN. Similarly, for the Andro 
dataset, MAPE is reduced from 15.204 (k-NN) 
to 5.730 (TriKNNE). For the Stock dataset, 
TriKNNE again achieves the lowest MAPE 
(1.194), indicating strong stability in 
percentage-based error measures. Although 
datasets such as CPU and Chatfield inherently 
exhibit higher MAPE values due to scale effects, 
the robust estimators perform at least 
comparably to, and in some cases better than, 
k-NN and its variants. 
 
3.5. Comparative Discussion 
Overall results across R2, MSE, MAE, and 
MAPE demonstrate that robust k-NN 
estimators consistently outperform the standard 
mean-based k-NN across most datasets, 
confirming the sensitivity of classical 
neighborhood averaging to outliers. Among the 
proposed methods, TriKNNE shows the most 
stable and accurate performance, as its joint 
weighting of quartiles and the median provides 
robustness and efficiency under skewed and 
noisy distributions. WKNNE and TKNNE also 
yield meaningful improvements, particularly for 
heavy-tailed data, while MKNNE remains 
competitive when strong trimming is 
appropriate but may be less effective otherwise. 
Robust estimation proves especially beneficial 

 TriKNNE 8.06 15.13 15.41 5.730 1.194 2.297 27.286 11.535  171.2 98.11 

 TKNNE 8.21 15.18 18.80 19.121 1.554 12.742 28.992 11.492  200.1 100.9 

https://portal.issn.org/resource/ISSN/3006-7030
https://portal.issn.org/resource/ISSN/3006-7030
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for high-noise datasets such as ATP and Yacht, 
leading to consistent reductions across all error 
measures. These findings confirm that 
replacing the conventional mean with robust 
statistical estimators substantially enhances k-

NN regression performance, offering a reliable 
framework for noisy and non-Gaussian data 
and motivating future research in robust and 
hybrid k-NN models. 

 

 
Figure 2 Comparative boxplots of MAE, MAPE, R2, and MSE for k-NN and its robust variants 
(RKNN, OKNNE, MKNNE, WKNNE, TriKNNE, and TKNNE) on the Concrete dataset. 
 

 
Figure 3 Comparative boxplots of MAE, MAPE, R2, and MSE for k-NN and its robust variants 
(RKNN, OKNNE, MKNNE, WKNNE, TriKNNE, and TKNNE) on the Boston dataset. 

https://portal.issn.org/resource/ISSN/3006-7030
https://portal.issn.org/resource/ISSN/3006-7030
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Figure 4 Comparative boxplots of MAE, MAPE, R2, and MSE for k-NN and its robust variants 
(RKNN, OKNNE, MKNNE, WKNNE, TriKNNE, and TKNNE) on the Real_Estate dataset. 

 
Figure 5 Comparative boxplots of MAE, MAPE, R2, and MSE for k-NN and its robust variants 
(RKNN, OKNNE, MKNNE, WKNNE, TriKNNE, and TKNNE) on the Andro dataset. 
 

 
Figure 6 Comparative boxplots of MAE, MAPE, R2, and MSE for k-NN and its robust variants 
(RKNN, OKNNE, MKNNE, WKNNE, TriKNNE, and TKNNE) on the Stock dataset. 
 

https://portal.issn.org/resource/ISSN/3006-7030
https://portal.issn.org/resource/ISSN/3006-7030
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Figure 7 Comparative boxplots of MAE, MAPE, R2, and MSE for k-NN and its robust variants 
(RKNN, OKNNE, MKNNE, WKNNE, TriKNNE, and TKNNE) on the ATP dataset. 
 

 
Figure 8 Comparative boxplots of MAE, MAPE, R2, and MSE for k-NN and its robust variants 
(RKNN, OKNNE, MKNNE, WKNNE, TriKNNE, and TKNNE) on the Yatch dataset. 
 

 
Figure 9 Comparative boxplots of MAE, MAPE, R2, and MSE for k-NN and its robust variants 
(RKNN, OKNNE, MKNNE, WKNNE, TriKNNE, and TKNNE) on the Wine dataset. 

https://portal.issn.org/resource/ISSN/3006-7030
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Figure 10 Comparative boxplots of MAE, MAPE, R2, and MSE for k-NN and its robust variants 
(RKNN, OKNNE, MKNNE, WKNNE, TriKNNE, and TKNNE) on the CPU dataset. 
 

 
Figure 11 Comparative boxplots of MAE, MAPE, R2, and MSE for k-NN and its robust variants 
(RKNN, OKNNE, MKNNE, WKNNE, TriKNNE, and TKNNE) on the Chatfield dataset. 
 
Across the analyzed datasets, TKNNE 
consistently delivers robust and high-
performing predictions. For Concrete and 
Boston (Figures 1-2), TKNNE produces close 
predictions with minimal spread, whereas 
traditional methods show greater sensitivity to 
heteroscedastic noise. In Real Estate, Andro, 
and Stock (Figures 3-5), which feature mixed 
distributions, TKNNE demonstrates stability, 
while classical approaches exhibit high vertical 
variance indicative of larger errors. For ATP, 
Yacht, and Wine (Figures 6-8), including the 
Yacht dataset where performance gaps are most 
pronounced, k-NN and RKNN are affected by 
severe outliers, whereas TKNNE remains 
insensitive, highlighting its robustness to non-
linear and complex data patterns. Similarly, for 
CPU and Chatfield (Figures 9-10), both 
irregular datasets, TKNNE boxplots remain 
compact with the smallest errors, further 

confirming its reliability and effectiveness 
across diverse and challenging data conditions. 
Boxplot analysis of ten datasets shows TKNNE 
achieves the highest R² and lowest errors, with 
TriKNNE also outperforming classical k-NN 
variants. Traditional methods exhibit higher 
variance and more outliers, while the reduced 
spread in the proposed methods highlights 
their robustness and generalizability. 
 
4. Conclusion 
This study introduced four robust extensions of 
the k-Nearest Neighbor regression framework 
MKNNE, WKNNE, TriKNNE, and TKNNE 
designed to address the sensitivity of the 
classical k-NN method to outliers, noise, and 
skewed neighborhood distributions. By 
incorporating robust central tendency 
estimators in place of the traditional sample 
mean, the proposed methods achieved 

https://portal.issn.org/resource/ISSN/3006-7030
https://portal.issn.org/resource/ISSN/3006-7030


Spectrum of Engineering Sciences   
ISSN (e) 3007-3138 (p) 3007-312X   
 

https://thesesjournal.com               | Faiz et al., 2025 | Page 765 

significant improvements in prediction 
accuracy across ten benchmark datasets with 
diverse statistical characteristics. Empirical 
results demonstrated that the robust estimators 
consistently outperformed standard k-NN, 
RKNN, and OKNNE models. Improvements 
were observed across all major evaluation 
metrics (R², MSE, MAE, MAPE), with 
TriKNNE emerging as the most stable and 
accurate estimator overall. Its balanced 
integration of median and quartile information 
provided increased resistance to extreme values 
while maintaining the efficiency required for 
high-quality regression predictions. Similarly, 
WKNNE and TKNNE showed notable 
performance gains, particularly in datasets with 
heavy-tailed distributions or irregular noise 
patterns. These findings confirm that 
incorporating robust estimation in the 
neighborhood aggregation step is an effective 
strategy for enhancing k-NN regression. The 
practical significance of the proposed methods 
is highlighted by datasets such as Yacht, ATP, 
and Concrete, demonstrating their utility in 
real-world applications where measurement 
noise, anomalies, or local irregularities are 
common. Beyond predictive accuracy, this work 
establishes a foundation for further research on 
the role of robustness in neighborhood-based 
learning. Future research could explore: 
adaptive neighborhood selection techniques, 
integration of robust estimators with metric 
learning frameworks, hybrid models that jointly 
optimize distance metrics and robust 
aggregation, and applications to high-
dimensional and domain-specific datasets, 
including medical, financial, and 
environmental data. 
Overall, the proposed robust k-NN estimators 
offer a simple yet powerful enhancement to 
classical k-NN regression. Their consistent 
performance across diverse datasets makes 
them practical, reliable, and computationally 
efficient tools for predictive modeling in noisy 
and heterogeneous data environments. 
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