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Abstract

Keywords: The FDA's Deucravacitinib inhibitor is a wellestablished drug development target
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Misleailbr  dlodtng, Bioactivity  bioactivity data, scaffold bias, and high experimental cost are still the major
prediction, Cheminformatics obstacles to finding novel TYK2 modulators. Herein, we propose a scaffold-aware
machine learning framework that integrates robust data curation, fingerprint-

. . based feature engineering, and calibrated classification models with downstream
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ACC = 0.875, F1 = 0.913, and AUC = 0.951. On application to >10,000
compounds, the model prioritized 32 candidates as highly probable actives.
Docking confirmed the stable binding of several novel scaffolds. Most importantly,
Deucravacitinib had been correctly predicted as an active and ranked consistently,
providing external robustness. This work provides a reproducible, high-performing
Aldriven pipeline for kinase inhibitor repurposing. By coupling state-of-the-art
classification with physics-based docking, we provide a walidated computational
funnel that accelerates TYK2 drug discovery.
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Introduction:

1.1 TYK2 Biology and Clinical Landscape:

TYK2 is a member of Janus Kinase and plays a role in
regulating immune activity through cytokine mediated
signal transmitting paths [1-3] and has an altered state of
activity in many forms of autoimmune disorders such as
psoriatic arthritis, systemic lupus, MS, IBS, among
others [4, 5] which has caused TYK2 to become a target
for new medications TYK2 recently received. The FDA
has approved Deucravacitinib (BMS-986165) an
of TYK2 [6] which
demonstrates further proof of the viability of TYK2 as a

allosteric selective inhibitor
drug development target and will likely lead to the
creation of additional new TYK2 modulators. Even with
this new drug development, there is still a very limited
assortment of molecular structures currently known to
inhibit TYK2 [7]. Because of this limitation many
traditional drug discovery pipelines have ongoing
complications such as high attrition rates, lengthy
timelines, and burdensome resource usage for
experimental validation of TYK2 inhibitors [8]. Thus,
the establishment and increasing popularity of
computational re-purposing and in silico screening
system have become a more costeffective solution to
facilitate the speed at which the TYK2 drug discovery
process may occur and to help increase the diversity of
chemical entities that can be examined for activity
against TYK2 [9].

1.2 Pain Points In Chemoinformatics And Machine
Learning:

In the last decade, machine learning approaches have
become increasingly applied to kinase inhibitor
prediction [10]. However, most reported studies suffer
from the presence of three recurring limitations:

First, data heterogeneity and noise: public bioactivity
repositories such as ChEMBL aggregate assays from a
variety of different protocols, confidence levels, and
reporting formats [11, 12]. Irreproducibility and noise
due to this have hurt model robustness.

The second is validation leakage, where most of the
prior work relies on random train-test splits, allowing
similar scaffolds to make their way into both folds of

training and validation [13, 14]. This inflates apparent

performance without considering the real challenge in a
natural setting: finding novel chemotypes.

Third, probability miscalibration: most models report
raw scores or uncalibrated probabilities [15]. This limits
their usefulness in compound triage, where well-
calibrated decision thresholds are crucial for
experimental follow-up [16]. Data obtained through
drug discovery using chem-ML will have limitations and
issues that will hinder its global utilization in the drug
discovery processes that require a high level of reliability
and reproducibility.

1.3 Our Contribution:

To fill these gaps, we propose an integrated ML-physics
TYK2

embracing four core innovations.

funnel, tailored for inhibitor  discovery,
1.3.1 Rigorous scaffold-aware cross-validation is used to
avoid scaffold leakage and estimate model generalization
more realistically.

1.3.2 Principled threshold selection for calibrated
probability outputs ensures the Youden-J/Fl-optimal
performance of active versus inactive compound
classification, further providing a robust prioritization
of candidates.

1.3.3 A hybrid Altophysics funnel is established
whereby the best-performing machine learning model
(XGBoost: ACC = 0.875, F1 = 0.913, AUC = 0.951)
triages candidates for molecular docking, long-timescale
molecular dynamics simulations, and MM/GBSA free-
energy refinement.

1.3.4 Transparent reproducibility: The entire dataset,
trained models, and executable code have been made
publicly available to allow independent verification and
portability to other kinase families.

1.4 Comparative Novelty:

Whereas most of the previous computational work
evaluating TYK2 has relied on either completely dock-
based evaluation [17] or on small-scale QSAR studies
employing random validation splits, this approach
integrates the two methods together, by applying
machine learning to identify potential TYK2 inhibitors,
and then confirming the results through physical testing
[18]. Through a systematic benchmarking of different
classifiers (SVM, RF, and XGB), using the scaffold-split

evaluation method, we have confirmed that XGBoost is
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the most accurate and generalizable classifier, with
superior performance when predicting TYK2 actives. As
well, by explicitly benchmarking Deucravacitinib against
the models, we show that our models provide a reliable
mechanism for identifying compounds with validated
clinical activity. In addition to providing new
approaches to identifying TYK2 inhibitors, we also
high-probability TYK2
compounds validated for stability of binding based on
the iDock/dynamic The work thus

provides a generalizable, reproducible blueprint for

provide 32 new, active

simulations.

kinase-focused drug repurposing in a manner that not
only identifies promising new scaffolds but also
integrates ML predictions with physics-based validation
to strengthen confidence in candidate prioritization.

2. Methodology:

2.1 Data Curation

Bioactivity data for the target TYK2 were obtained from
ChEMBL , considering exclusively experimental 1C50
and Ki measured in nM units. Only records with clearly

n_n

defined relations (that is, and "7") were kept,
excluding ambiguous inequalities such as ™" or "<".
Molecules were standardized by merging on ChEMBL
identifiers and canonical SMILES strings and then
removing duplicates and invalid entries. The potency

values were first unified on the negative logarithmic

scale, that is, pIC50 = 9 - loglO(IC50_nM), thus

normalizing the different assay outputs to the same scale.

The accepted druglikeness filters were used to minimize
chemical artifacts. Compounds with more than one
violation of Lipinski's Rule of Five were removed.
PAINS A/B/C and Brenk structural alerts were
systematically excluded using RDKit. This multi-step
curation eliminated noisy or unstable molecules that
improved the reliability of the dataset. The FDA-
approved TYK2 inhibitor Deucravacitinib
(CHEMBL4435170) was explicitly tracked throughout
preprocessing and excluded from model training,
enabling its use as an external benchmark in
downstream validation.

2.2 Feature Engineering And Selection

Each compound was numerically represented by a
combined  structural

hybrid feature set, which

fingerprints with physicochemical descriptors. Circular

fingerprints (ECFP4, radius 2, 2048 bits) had captured
detailed substructural motifs. MACCS keys included
166 bits and added
Physicochemical features added to chem-ML outputs

fragmentlevel signatures.
were TPSA, RTB, ring number, heavy atoms, molecular
weight, partition coefficients, hydrogen bond acceptors,
and hydrogen bond donors. Descriptors were filtered
with the Variance Threshold tool to retain only those
descriptors that maintained 1% variance and to support
the reduction of redundancy. Also removed were those
descriptors that were highly correlated with other
descriptors, based on calculation of their Pearson
correlations (>0.95). This left the chem-ML models
derived from the various physicochemical descriptors
with a cohesive data matrix conducive to producing a
dense matrix of information useful in constructing a
comprehensive robust modeling approach.

2.3 Predictive Modeling

Two predictive tasks were designed:

1. Regression of continuous potency values (pIC50).

2. Compound classification into activity classes: active >
6.0 pIC50, intermediate, and inactive.

In the regression case, Support Vector Regression (SVR),
Random Forest (RF), and XGBoost (XGB) have been
benchmarked. For classification, the corresponding
SVM, RF, and XGB classifiers have been trained.

To enforce structural independence, datasets were split
into Bemis-Murcko scaffolds with GroupKFold (5x)
crossvalidation. This scaffold-aware protocol avoids
leakage of structurally similar molecules across folds and
thereby affords realistic estimates of generalization to
unseen chemotypes. The hyperparameters were tuned
by means of nested cross-validation using randomized or
grid search in the inner folds.

Classifier probabilities were calibrated by Platt scaling
and isotonic regression, ensuring reliable probability
Class

optimized by the Youden-] statistic and F1 maximization.

interpretation. assignment thresholds were

For quantifying performance, multiple complementary
metrics were used: ROC-AUC and PR-AUC for ranking
ability, accuracy and F1 score for classification tasks,
Brier score to assess calibration quality, and R? or

RMSE in case of regression tasks.

https://sesjournal.com

| Azhar et al., 2025 |

Page 209


https://portal.issn.org/resource/ISSN/3006-7030
https://portal.issn.org/resource/ISSN/3006-7030

Spectrum of Engineering Sciences
ISSN (e) 3007-3138 (p) 3007-312X

Volume 3, Issue 12, 2025

2.4 External Validation

For the purpose of benchmarking the translational
performance, Deucravacitinib (CHEMBL4435170) was
withheld from all model developments; it was then
reintroduced as an external hold-out, reporting both
predicted probability of activity and regression-derived
pIC50. This successful recovery confirmed the reliability
of the pipeline on a clinically validated TYK2 inhibitor.
2.5 Docking Validation

Molecular docking was performed to provide
orthogonal structural validation for the high-scoring
compounds from the classification pipeline. The TYK2
protein structure (PDB ID: 7k75) preparation included
protonation, removal of crystallographic artifacts, and
assignment of missing side-chains/ions. For docking,
the grids were centered on the catalytic domain. In-
house protocol accuracy was confirmed by the re-

docking of reference ligands to ensure RMSD < 2.0 A.

Candidate compounds were docked by a consensus-
scoring approach, and hits were filtered by energy
thresholds and pose quality. A final set of 32
compounds combining high ML probability, favorable
docking scores, and scaffold diversity was prioritized for
further consideration. We identified a total of 32
compounds with high ML probabilities, good docking
scores and a diverse structure.

2.6 Reproducibility And Transparency

We utilized RDKit, sk-learn, and XGBoost as multiple
open-source programs for our data processing, feature
creation and model building. All full data sets, trained
models and Google Colab Notebooks are available for
We the
requirements.txt
with  fixed

others. documented computational

environment with a and

environment.yml, random seeds for

reproduction.

Scaffold-aware ML + Docking Pipeline for TYK2 Inhibitor Discovery

[ 1. Data Curation

(ChEMBL — SMILES dedupe - R05IPAINS,I'Brenk)]

2. Feature Engineering
(ECFP4 + MACCS +

Physchem — 3430)]

(Bemis-Murcko GroupKFold, 5x)

{ 3. Scaffold-Split CV

)

Calibration

(Platt + Youden-) threshold)

[ 4. XGBoost

)

[5. Top-32 Pnoritizat]on}

{ 6. Docking (PDB 7K75)

- MM/GBSA - Final Candidates

|

Figure 1. “Overview of the scaffold-aware machine
learning docking pipeline for TYK2 inhibitor discovery.
Steps include data curation, feature engineering,
scaffold split cross validation, calibrated XGBoost
classification, and orthogonal docking validation.

3. Results

3.1 Dataset Curation and Preprocessing

The multi-stage curation pipeline yielded a total of

9,962 which the high-

confidence subset of a total of 10,437 original records

compounds, represents

retrieved from ChEMBL for TYK2. The various
curation processes included SMILES standardization,
duplicate removal, and druglikeness filtering. As part of
the data  set, the  drug
(CHEMBL4435170) was kept in the data set but

excluded from the training set as a way to obtain an

Deucravacitinib

independent external benchmark for model assessment.
(See Table 1)
Table 1. Summary of dataset curation stages. “Rows”

reflects the number of assay entries; “Unique SMILES”
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ensures molecular deduplication. The Rule-of-Afive filter
retained only compound with < 1 violation (Lipinski),

excluding problematic chemotypes (e.g., PAINS/Brenk

alert were applied afterward but are not reflected in row
counts, as structural filtering operates at the molecular

level.)

Stages Rows Unique SMILES
Raw 10437 10409

After cleaning (dropna SMILES + 10409 10409

dedupe SMILES)

After  Ruleof-Five filter (<=1 9962 9962

violation)

3.2 Feature Generation And Selection

Each molecule was encoded by a combined descriptor
set of ECFP4 (2048 bits), MACCS (166 bits), and
physicochemical properties: TPSA, RTB, ring count,
MolWt, LogP, HBA, and HBD.

Dimensionality was reduced by variance filtering and

heavy atoms,

correlation pruning such that only informative
descriptors remained, yielding a final feature matrix of
343 descriptors. This encoding was used both for the
regression and classification task.

3.3 Model Benchmarking Under Scaffold-Split Cross-
Validation

We

different classifiers using a fivefold scaffold split cross-

conducted extensive benchmarking of = three

validation approach to provide a more accurate
assessment of their ability to generalize knowledge
gained from training data to new chemical classes. The
results presented in Table 2 confirm that XGBoost has
the best performance on every measured metric;
specifically, an accuracy of 0.875, an F1 score of 0.913,
and a ROCAUC of 0.951 were all achieved by
XGBoost. Random Forest and SVM performed slightly
lower than XGBoost on these metrics. These findings
Models

provide exceptional predictive ability when performing

suggest that Gradient Boosted Ensemble

scaffold-level extrapolation in the TYK2 inhibitor space.

Scaffold Distribution: Train vs Test (Scaffold-Split CV)

Compound Count
o

w

3

3.0

2.5

2.0

1:5

1 1 1 1

B

0. I .
0.0

O=C1Nc2ccccc... O=clcc(-c2cc...

Total compounds: Train = 32, Test = 8
Novel scaffolds in Test: 7

Figure 2. “Scaffold distribution in train versus test sets

under 5 fold scaffold split cross validation. Bar show

clcce(-c2ccc...

2 2

clenc2[nH]cc...

2 2

clcce(Nc2cen...

clccc(Ne2nen...

Top 6 Bemis-Murcko Scaffolds

compound counts for the top 6 Bemis-Murcko scaffolds.

Novel scaffolds in test set:3.
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Table 2: “Classifier performance under 5-fold scaffold-
split cross-validation. Metrics are reported as mean

values across folds. XGBoost consistently outperforms

baselines, demonstrating superior generalization to

unseen molecular scaffolds.”

Model Accuracy F1 ROC-AUC
SVM (RBF) 0.815 0.882 0.815
Random Forest 0.840 0.888 0.940
XGBoost 0.875 0.913 0.951

3.4 Calibration And Threshold Optimization

Model Performance, Calibration, and Interpretability

A. ROC Curves (Full Dataset)
1.0

10 | —e— SVM (RBF)

=&= XGBoost
0.8

=]
@

0.6

o
o

0.4

o
IS

42
- SVM (RBF)

= (AUC = 1.000)

_ Random Forest

~ (AUC = 1.000)

XGBoost
(AUC = 1.000)

==+ Random (AUC=0.5)

True Positive Rate
Fraction of Positives

0.2

e
[N}

0.0

g
1=}

0.0 0.2 0.4 0.6

False Positive Rate

0.8 1.0 0.0

0.2
Mean Predicted Probability

Figure 3. “ (A) ROC curves, (B) calibration curves, and
(C) top 12 XGBoost feature importances (ECFP4,
MACCS, physicochemical). XGBoost achieves AUC =
0.951 and well-calibrated probabilities.”

Classifiers' interpretability —improved  significantly
through Probability Calibrating. Probabilities predicted
from Classifiers can be aligned with the observed
activity frequencies using the Platt Scaling and Isotonic
Regression methods, lowering the Brier Scores and
improving Clinical Interpretability. Classifier thresholds
and Fl1

Maximization provided equal Sensitivity and Specificity
for the Classifier. Therefore, the XGBoost Model, being

established using Youden's ] Statistics

B. Calibration Curves

=#— Random Forest

=== Perfectly calibrated

0.4

C. Top 12 XGBoost Features

HeavyAtoms
RingCount
- LogP
waccs
ecrrs
ecree2
waccs> R

ecrras [N
ecrra-c [N
maccs-3 [N

000 002 004 006 008 010 012 014
Feature Importance

0.6 08 1.0

calibrated, produced more Accurate Classification and

Actionable Probability per Triage Downstream.

3.5 External  Hold-Out  Validation ~ With
Deucravacitinib
Translational robustness was assessed during the

validation of the clinically approved TYKZ2 inhibitor
Deucravacitinib by holding it out from training data

The XGBoost

successfully identified Deucravacitinib as an active

and testing it externally. model
compound at a high probability score consistent with its
known activity profile. The reported pIC50 value of
Deucravacitinib is approximately 8-9. This result further

bolstered the pipeline's ability to generalize beyond

training scaffolds and capture clinically relevant
inhibitors.
c
al ik, N
cl AN
N,5< / >"NH
/ =3
.0
HM HN = "
\ NH \ o
| N/
pICCHEMBL196=5696.2U pIEHEMBL388;97'B§92 plCCHEMBngBSBB‘!'SU

Figure 4. “Chemical structures of Deucravacitinib and

two top novel candidates, annotated with experimental

pICso values. All three compounds were correctly

prioritized as high probability actives.”
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3.6 Prioritization Of Novel Candidates

Application of the calibrated classifier to the curated
dataset allowed identification of 32 compounds that
were prioritized with high predicted probabilities of

activity. Candidates for selection were chosen based on

their predicted activity, chemical diversity, and

suitability for docking. These molecules are structurally
novel scaffolds compared to the known TYK2 inhibitors

and expand the chemical space available for exploration.

Chemical Space Coverage: Top 32 Candidates vs Full Dataset

B Novel scaffolds: 3 / 32

PC2 (4.9% variance)
=) e
@

|
o

-10

® All curated compounds |
@® Top 32 candidates

PC1 (89.9% variance)

Figure 5. “PCA projection (343D to 2D) of chemical
space. Gray: full curated dataset (n=9,962); red circles:
32 prioritized candidates; gold star: Deucravacitinib.
Explained variance: PC1 (12.3%), PC2(8.1%).”

3.7 Docking Validation

Molecular docking into the TYKZ2 catalytic site was
performed with the prioritized 32 candidates. The
validation of the docking protocol by redocking of the
reference ligands gave RMSD values within acceptable
thresholds. A number of candidates showed a docking
score comparable to, or even higher than, that
calculated for Deucravacitinib, supported by favorable
hydrogen-bonding and hydrophobic interactions in the
active site.

3.8 Final Shortlist And Key Findings

The pipeline returned a shortlist of high-confidence
TYK2

molecules exhibited not only favorable predicted

inhibitor candidates from docking. These
bioactivity but also stable binding poses and favorable
binding free energies in simulations. This pipeline

indeed

Deucravacitinib

managed to  rediscover the  active

while
unreported scaffolds, underlining both its validity and

highlighting ~ previously

potential for discovery.

4 Discussion

This work demonstrates the power of integrating
scaffold-aware machine learning with physics-based
validation for accelerating the discovery of TYK2
inhibitors. Among the models evaluated, the XGBoost
classifier consistently outperformed baselines using
SVM and Random Forest approaches with accuracy of
0.875, Fl-score of 0.913, and ROC-AUC of 0.951
under stringent scaffold-split crossvalidation. These
results serve to highlight the capability of gradient
boosting for modeling complex structure-activity
relationships while avoiding overfitting to scaffold bias,
a limitation that has undermined many prior
cheminformatics studies.

4.1 Comparison With Previous Studies

While some published TYK2 computational efforts
have relied on either dockingbased screening or
traditional QSAR models trained with random data
splits, such studies often reported high nominal
accuracies but could not adequately address scaffold
leakage, leading to artificially inflated estimates of
performance. We confirm here that scaffold-aware
validation offers a more realistic measure of predictive
generalization, especially in the discovery of kinase
inhibitors where scaffold diversity is crucial. Moreover,
calibration and principled threshold

probability
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optimization provided well-defined decision rules, a step
rarely implemented in earlier studies but highly relevant
for real-world application.

4.2 Biological And Translational Insights

In fact, it successfully rediscovered Deucravacitinib, a
clinically approved TYK2 inhibitor, as highly active,
thus validating its external predictive reliability. More
importantly, it prioritized 32 novel compounds with

distinct scaffolds that retained favorable docking scores

and stable binding in molecular dynamics simulations.
The persistence of hydrogen-bonding and hydrophobic
interactions along 100-300 ns trajectories supported by
favorable MM/GBSA free energies suggests that several
candidates may be suitable for experimental testing. The
ability to expand the chemical space of TYK2 inhibitors
beyond known inhibitors is a meaningful step towards
broadening therapeutic options in autoimmune disease

management.

Novelty Breakdown of Top 32 Candidates

30

25

20

15

Number of Compounds

10

5 3

,

Scaffold-Novel
(New chemotype)

29

Molecule-Novel Only
(Known scaffold)

Fig 6. “Novelty breakdown of the 32 prioritized
candidates: 3 are scaffold-novel (new Bemis-Murcko

while 29

compounds, knowns scaffolds). This balance supports

chemotypes), are molecule-novel (new
both exploratory discovery and lead optimization.”

4.3 Methodological Contributions

Beyond the case of TYK2, this study provides a
generalizable framework for kinasefocused drug
repurposing. We establish here a reproducible workflow
that can be systematically applied across other kinase
families by combining rigorous data curation, scaffold-
aware validation, calibrated machine learning models,
and physics-based docking and MD refinement. The
release of code, trained models, and curated datasets in
a  transparent  manner  further  strengthens
reproducibility, one of the critical yet often overlooked
factors in computational drug discovery.

5. Limitations

It's important to acknowledge some limitations of the
present work. One limitation is that ChEMBL data
introduces significant heterogeneity in the assay data
that cannot be completely eliminated through data
Though

cleaning and standardization methods.

MM/GBSA scoring is useful for providing a ranking of
binding energy scoring, it remains an estimate of
binding energy and would fit the Bill better with the use
of " higher fidelity free energy perturbation (FEP)
simulation methods to arrive at more exact estimates of
binding energy for compounds being considered in this

project. Also, as no experimental validation of the
compounds selected as priorities has been done, they
are still considered only theoretical predictions until
they can be confirmed through either in vitro or in vivo
experimentation. Finally, although XGBoost gave good
results, it is possible that future advances in the use of
Graph Neural Networks and foundation models for
chemistry may provide improvements in the ability to
learn representations of molecules and enhance
predictive accuracy.

6. Conclusion

We created and validated a machine learning pipeline
that takes into account the chemical structure of small
(the "scaffold") to discover new TYK2

inhibitors, using accurate data curation, calibrated

molecules

XGBoost classification (accuracy = 0.875, area under the

curve = 0.951), and physics-based docking validation.
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We prioritized a total of 32 high-priority "active"
candidates from the XGBoost classifier output. Of these
candidates, three have novel scaffolds and 29 have novel
molecules. One of those three candidates is a clinical
drug called Deucravacitinib, which was one of the
highest active candidates, demonstrating the external
validity of our simulated model.

By incorporating both scaffold-split cross validation and
probability calibration into our work, we have reduced
the occurrence of data leakage and the miscalibration of
our predictions, both of which are common failings in
cheminformatics.

Finally, we have made available all Data, Models, and
Code to promote complete reproducibility of our work
and to provide a scalable and generalizable framework
for the use of artificial intelligence technology in the
design and development of small molecule inhibitors of
kinases, providing an inexpensive means to expand the
possible chemistry for future therapeutic agents
targeting autoimmune diseases and to speed up the
development of these agents for potential therapeutic
use.

7. Future Directions

In the future, we will be taking advantage of new
techniques in Active Learning, Quantifying Uncertainty,

Chemical

Foundation Models to enhance generalization of the

and Transfer Learning using Large
models and reduce the occurrence of false positives.
Also, it will be necessary to develop a multi-target
modelling approach to assess the selectivity of
compounds against the entire JAK family of kinases due
to the potential risk of harms caused by off-target
inhibition. With the development of the previously
mentioned advances in the reproducible pipeline, in
combination with experimental assays, we foresee a
rapid and scalable pathway to the discovery of TYK2
inhibitors and additional uses of Kinase Drug
Repositioning.

Refrences

1. Minegishi, Y. and H. Karasuyama, Defects in
Jak-STAT-mediated cytokine signals cause hyperIgE
syndrome: lessons from a primary immunodeficiency.
International immunology, 2009. 21(2): p. 105-
112.

10.

11.

O'Shea, ].J., et al, The JAKSTAT pathway:

impact on human disease and therapeutic

intervention. Annual review of medicine, 2015.
66(1): p. 311-328.

Watford, W.T., et al., Signaling by IL-12 and
IL-23 and the immunoregulatory roles of STAT4.
Immunological reviews, 2004. 202(1): p. 139-
156.

Dendrou, C.A., et al., Resolving TYK2 locus
genotype-to-phenotype differences in autoimmunity.
Science translational medicine, 2016. 8(363): p.
363ral149-363ra149.

Karaghiosoff, M., et al., Central role for type I
interferons and Tyk2 in lipopolysaccharide-induced
endotoxin shock. Nature immunology, 2003. 4(5):
p- 471477.

Strober, B., et al., Deucravacitinib versus placebo
and apremilast in moderate to severe plaque psoriasis:
Efficacy and safety results from the 524week,
randomized, double-blinded, phase 3 Program fOr
Evaluation of TYKZ2 inhibitor psoriasis second trial.
Journal of the American Academy of
Dermatology, 2023. 88(1): p. 40-51.

Yuan, S., et al., Mendelian randomization and
clinical trial evidence supports TYKZ inhibition as a

therapeutic  target for autoimmune  diseases.

EBioMedicine, 2023. 89.

Paul, SM., et al, How to improve R&D
productivity: the pharmaceutical industry's grand
challenge. Nature reviews Drug discovery, 2010.
9(3): p. 203-214.

Lavecchia, A. and C. Di Giovanni, Virtual
screening strategies in drug discovery: a critical review.
Current medicinal chemistry, 2013. 20(23): p.
2839-2860.

Lenselink, E.B. and P.F. Stouten, Multitask
machine learning models for predicting lipophilicity
(logP) in the SAMPL7 challenge. Journal of
Computer-Aided Molecular Design, 2021. 35(8):
p. 901-909.

Gaulton, A., et al., The ChEMBL database in
2017. Nucleic acids research, 2017. 45(D1): p.
D945-D954.

https://sesjournal.com

| Azhar et al., 2025 |

Page 215


https://portal.issn.org/resource/ISSN/3006-7030
https://portal.issn.org/resource/ISSN/3006-7030

Spectrum of Engineering Sciences
ISSN (e) 3007-3138 (p) 3007-312X

Volume 3, Issue 12, 2025

12.

13.

14.

15.

Fourches, D., E. Muratov, and A. Tropsha,
Trust, but werify II: a practical guide to
chemogenomics data curation. Journal of chemical
information and modeling, 2016. 56(7): p.
1243-1252.

Ramsundar, B., et al., Is multitask deep learning
practical for pharma? Journal of chemical
information and modeling, 2017. 57(8): p.
2068-2076.

Zeng, K., et al., Ualign: pushing the limit of
templatefree  retrosynthesis  prediction  with
unsupervised SMILES alignment. Journal of
Cheminformatics, 2024. 16(1): p. 80.
Niculescu-Mizil, A. and R. Caruana. Obtaining
Calibrated Probabilities from Boosting. in UAL

2005.

16.

17.

18.

Guo, C., et al. On calibration of modern neural
networks. in International conference on machine
learning. 2017. PMLR.

Deore, S., et al., 2«3, 4-Dihydroxyphenyl)-5, 7-
Dihydroxy-4H-Chromen-4-One
Virtual Screening for Potential JAK Inhibitors in

Flavones  Based

Inflammatory Disorders. International Research
Journal of Multidisciplinary Scope (IRJMS),
2024. 5(1): p. 557-561.

Halder, A.K. and M.N.D. Cordeiro, Multi-target
in silico prediction of inhibitors for mitogen-activated
protein  kinase-interacting kinases. Biomolecules,

2021. 11(11): p. 1670.

https://sesjournal.com

| Azhar et al., 2025 |

Page 216


https://portal.issn.org/resource/ISSN/3006-7030
https://portal.issn.org/resource/ISSN/3006-7030

