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Abstract
The FDA's Deucravacitinib inhibitor is a well-established drug development target
for tyrosine kinase II from an immunological perspective. However, noisy
bioactivity data, scaffold bias, and high experimental cost are still the major
obstacles to finding novel TYK2 modulators. Herein, we propose a scaffold-aware
machine learning framework that integrates robust data curation, fingerprint-
based feature engineering, and calibrated classification models with downstream
molecular docking validation. Standardized TYK2 bioactivity data (pIC50) were
encoded using ECFP4, MACCS, and physicochemical descriptors, followed by
variance and correlation-based pruning. Three classifiers, namely Support Vector
Machine, Random Forest, and XGBoost, were benchmarked under scaffold-split
cross-validation to ensure realistic generalization. Our proposed XGBoost classifier
yielded a superior performance compared to the RF and SVM baselines, with
ACC = 0.875, F1 = 0.913, and AUC = 0.951. On application to >10,000
compounds, the model prioritized 32 candidates as highly probable actives.
Docking confirmed the stable binding of several novel scaffolds. Most importantly,
Deucravacitinib had been correctly predicted as an active and ranked consistently,
providing external robustness. This work provides a reproducible, high-performing
AI-driven pipeline for kinase inhibitor repurposing. By coupling state-of-the-art
classification with physics-based docking, we provide a validated computational
funnel that accelerates TYK2 drug discovery.
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Introduction:
1.1 TYK2 Biology and Clinical Landscape:
TYK2 is a member of Janus Kinase and plays a role in

regulating immune activity through cytokine mediated

signal transmitting paths [1-3] and has an altered state of

activity in many forms of autoimmune disorders such as

psoriatic arthritis, systemic lupus, MS, IBS, among

others [4, 5] which has caused TYK2 to become a target

for new medications TYK2 recently received. The FDA

has approved Deucravacitinib (BMS-986165) an

allosteric selective inhibitor of TYK2 [6] which

demonstrates further proof of the viability of TYK2 as a

drug development target and will likely lead to the

creation of additional new TYK2 modulators. Even with

this new drug development, there is still a very limited

assortment of molecular structures currently known to

inhibit TYK2 [7]. Because of this limitation many

traditional drug discovery pipelines have ongoing

complications such as high attrition rates, lengthy

timelines, and burdensome resource usage for

experimental validation of TYK2 inhibitors [8]. Thus,

the establishment and increasing popularity of

computational re-purposing and in silico screening

system have become a more cost-effective solution to

facilitate the speed at which the TYK2 drug discovery

process may occur and to help increase the diversity of

chemical entities that can be examined for activity

against TYK2 [9].

1.2 Pain Points In Chemoinformatics And Machine
Learning:
In the last decade, machine learning approaches have

become increasingly applied to kinase inhibitor

prediction [10]. However, most reported studies suffer

from the presence of three recurring limitations:
First, data heterogeneity and noise: public bioactivity

repositories such as ChEMBL aggregate assays from a

variety of different protocols, confidence levels, and

reporting formats [11, 12]. Irreproducibility and noise

due to this have hurt model robustness.

The second is validation leakage, where most of the

prior work relies on random train-test splits, allowing
similar scaffolds to make their way into both folds of

training and validation [13, 14]. This inflates apparent

performance without considering the real challenge in a

natural setting: finding novel chemotypes.

Third, probability miscalibration: most models report

raw scores or uncalibrated probabilities [15]. This limits

their usefulness in compound triage, where well-

calibrated decision thresholds are crucial for

experimental follow-up [16]. Data obtained through

drug discovery using chem-ML will have limitations and

issues that will hinder its global utilization in the drug

discovery processes that require a high level of reliability

and reproducibility.

1.3 Our Contribution:
To fill these gaps, we propose an integrated ML–physics

funnel, tailored for TYK2 inhibitor discovery,

embracing four core innovations.

1.3.1 Rigorous scaffold-aware cross-validation is used to

avoid scaffold leakage and estimate model generalization

more realistically.

1.3.2 Principled threshold selection for calibrated

probability outputs ensures the Youden-J/F1-optimal

performance of active versus inactive compound

classification, further providing a robust prioritization

of candidates.

1.3.3 A hybrid AI-to-physics funnel is established

whereby the best-performing machine learning model

(XGBoost: ACC = 0.875, F1 = 0.913, AUC = 0.951)

triages candidates for molecular docking, long-timescale

molecular dynamics simulations, and MM/GBSA free-

energy refinement.

1.3.4 Transparent reproducibility: The entire dataset,

trained models, and executable code have been made

publicly available to allow independent verification and

portability to other kinase families.

1.4 Comparative Novelty:
Whereas most of the previous computational work

evaluating TYK2 has relied on either completely dock-

based evaluation [17] or on small-scale QSAR studies

employing random validation splits, this approach

integrates the two methods together, by applying

machine learning to identify potential TYK2 inhibitors,

and then confirming the results through physical testing
[18]. Through a systematic benchmarking of different

classifiers (SVM, RF, and XGB), using the scaffold-split

evaluation method, we have confirmed that XGBoost is
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the most accurate and generalizable classifier, with

superior performance when predicting TYK2 actives. As

well, by explicitly benchmarking Deucravacitinib against

the models, we show that our models provide a reliable

mechanism for identifying compounds with validated

clinical activity. In addition to providing new

approaches to identifying TYK2 inhibitors, we also

provide 32 new, high-probability TYK2 active

compounds validated for stability of binding based on

the iDock/dynamic simulations. The work thus

provides a generalizable, reproducible blueprint for

kinase-focused drug repurposing in a manner that not

only identifies promising new scaffolds but also

integrates ML predictions with physics-based validation

to strengthen confidence in candidate prioritization.

2. Methodology:
2.1 Data Curation
Bioactivity data for the target TYK2 were obtained from

ChEMBL , considering exclusively experimental IC50

and Ki measured in nM units. Only records with clearly

defined relations (that is, "=" and "~") were kept,

excluding ambiguous inequalities such as ">" or "<".

Molecules were standardized by merging on ChEMBL

identifiers and canonical SMILES strings and then

removing duplicates and invalid entries. The potency

values were first unified on the negative logarithmic

scale, that is, pIC50 = 9 - log10(IC50_nM), thus

normalizing the different assay outputs to the same scale.

The accepted drug-likeness filters were used to minimize

chemical artifacts. Compounds with more than one

violation of Lipinski's Rule of Five were removed.

PAINS A/B/C and Brenk structural alerts were

systematically excluded using RDKit. This multi-step

curation eliminated noisy or unstable molecules that
improved the reliability of the dataset. The FDA-

approved TYK2 inhibitor Deucravacitinib

(CHEMBL4435170) was explicitly tracked throughout

preprocessing and excluded from model training,

enabling its use as an external benchmark in

downstream validation.

2.2 Feature Engineering And Selection
Each compound was numerically represented by a

hybrid feature set, which combined structural

fingerprints with physicochemical descriptors. Circular

fingerprints (ECFP4, radius 2, 2048 bits) had captured

detailed substructural motifs. MACCS keys included

166 bits and added fragment-level signatures.

Physicochemical features added to chem-ML outputs

were TPSA, RTB, ring number, heavy atoms, molecular

weight, partition coefficients, hydrogen bond acceptors,

and hydrogen bond donors. Descriptors were filtered

with the Variance Threshold tool to retain only those

descriptors that maintained 1% variance and to support

the reduction of redundancy. Also removed were those

descriptors that were highly correlated with other

descriptors, based on calculation of their Pearson

correlations (>0.95). This left the chem-ML models

derived from the various physicochemical descriptors

with a cohesive data matrix conducive to producing a

dense matrix of information useful in constructing a

comprehensive robust modeling approach.

2.3 Predictive Modeling
Two predictive tasks were designed:

1. Regression of continuous potency values (pIC50).

2. Compound classification into activity classes: active ≥

6.0 pIC50, intermediate, and inactive.

In the regression case, Support Vector Regression (SVR),

Random Forest (RF), and XGBoost (XGB) have been

benchmarked. For classification, the corresponding

SVM, RF, and XGB classifiers have been trained.

To enforce structural independence, datasets were split

into Bemis–Murcko scaffolds with GroupKFold (5×)

cross-validation. This scaffold-aware protocol avoids

leakage of structurally similar molecules across folds and

thereby affords realistic estimates of generalization to

unseen chemotypes. The hyperparameters were tuned

by means of nested cross-validation using randomized or

grid search in the inner folds.
Classifier probabilities were calibrated by Platt scaling

and isotonic regression, ensuring reliable probability

interpretation. Class assignment thresholds were

optimized by the Youden-J statistic and F1 maximization.

For quantifying performance, multiple complementary

metrics were used: ROC-AUC and PR-AUC for ranking

ability, accuracy and F1 score for classification tasks,
Brier score to assess calibration quality, and R² or

RMSE in case of regression tasks.
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2.4 External Validation
For the purpose of benchmarking the translational

performance, Deucravacitinib (CHEMBL4435170) was

withheld from all model developments; it was then

reintroduced as an external hold-out, reporting both

predicted probability of activity and regression-derived

pIC50. This successful recovery confirmed the reliability

of the pipeline on a clinically validated TYK2 inhibitor.

2.5 Docking Validation
Molecular docking was performed to provide

orthogonal structural validation for the high-scoring

compounds from the classification pipeline. The TYK2

protein structure (PDB ID: 7k75) preparation included

protonation, removal of crystallographic artifacts, and

assignment of missing side-chains/ions. For docking,

the grids were centered on the catalytic domain. In-

house protocol accuracy was confirmed by the re-

docking of reference ligands to ensure RMSD < 2.0 Å.

Candidate compounds were docked by a consensus-

scoring approach, and hits were filtered by energy

thresholds and pose quality. A final set of 32

compounds combining high ML probability, favorable

docking scores, and scaffold diversity was prioritized for

further consideration. We identified a total of 32

compounds with high ML probabilities, good docking

scores and a diverse structure.

2.6 Reproducibility And Transparency
We utilized RDKit, sk-learn, and XGBoost as multiple

open-source programs for our data processing, feature

creation and model building. All full data sets, trained

models and Google Colab Notebooks are available for

others. We documented the computational

environment with a requirements.txt and

environment.yml, with fixed random seeds for

reproduction.

Figure 1. “Overview of the scaffold-aware machine
learning docking pipeline for TYK2 inhibitor discovery.

Steps include data curation, feature engineering,

scaffold split cross validation, calibrated XGBoost

classification, and orthogonal docking validation.

3. Results
3.1 Dataset Curation and Preprocessing
The multi-stage curation pipeline yielded a total of
9,962 compounds, which represents the high-

confidence subset of a total of 10,437 original records

retrieved from ChEMBL for TYK2. The various
curation processes included SMILES standardization,

duplicate removal, and drug-likeness filtering. As part of

the data set, the drug Deucravacitinib

(CHEMBL4435170) was kept in the data set but

excluded from the training set as a way to obtain an

independent external benchmark for model assessment.
(See Table 1)

Table 1. Summary of dataset curation stages. “Rows”

reflects the number of assay entries; “Unique SMILES”
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ensures molecular deduplication. The Rule-of-five filter

retained only compound with ≤ 1 violation (Lipinski),

excluding problematic chemotypes (e.g., PAINS/Brenk

alert were applied afterward but are not reflected in row

counts, as structural filtering operates at the molecular

level.)
Stages Rows Unique SMILES

Raw 10437 10409

After cleaning (dropna SMILES +

dedupe SMILES)

10409 10409

After Rule-of-Five filter (<=1

violation)

9962 9962

3.2 Feature Generation And Selection
Each molecule was encoded by a combined descriptor

set of ECFP4 (2048 bits), MACCS (166 bits), and

physicochemical properties: TPSA, RTB, ring count,

heavy atoms, MolWt, LogP, HBA, and HBD.

Dimensionality was reduced by variance filtering and

correlation pruning such that only informative
descriptors remained, yielding a final feature matrix of

343 descriptors. This encoding was used both for the

regression and classification task.

3.3 Model Benchmarking Under Scaffold-Split Cross-
Validation
We conducted extensive benchmarking of three

different classifiers using a fivefold scaffold split cross-

validation approach to provide a more accurate
assessment of their ability to generalize knowledge

gained from training data to new chemical classes. The

results presented in Table 2 confirm that XGBoost has

the best performance on every measured metric;

specifically, an accuracy of 0.875, an F1 score of 0.913,

and a ROC-AUC of 0.951 were all achieved by
XGBoost. Random Forest and SVM performed slightly

lower than XGBoost on these metrics. These findings

suggest that Gradient Boosted Ensemble Models

provide exceptional predictive ability when performing

scaffold-level extrapolation in the TYK2 inhibitor space.

Figure 2. “Scaffold distribution in train versus test sets

under 5 fold scaffold split cross validation. Bar show

compound counts for the top 6 Bemis-Murcko scaffolds.

Novel scaffolds in test set:3.
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Table 2: “Classifier performance under 5-fold scaffold-

split cross-validation. Metrics are reported as mean

values across folds. XGBoost consistently outperforms

baselines, demonstrating superior generalization to

unseen molecular scaffolds.”

Model Accuracy F1 ROC-AUC

SVM (RBF) 0.815 0.882 0.815

Random Forest 0.840 0.888 0.940

XGBoost 0.875 0.913 0.951

3.4 Calibration And Threshold Optimization

Figure 3. “ (A) ROC curves, (B) calibration curves, and

(C) top 12 XGBoost feature importances (ECFP4,

MACCS, physicochemical). XGBoost achieves AUC =

0.951 and well-calibrated probabilities.”

Classifiers' interpretability improved significantly

through Probability Calibrating. Probabilities predicted

from Classifiers can be aligned with the observed

activity frequencies using the Platt Scaling and Isotonic

Regression methods, lowering the Brier Scores and

improving Clinical Interpretability. Classifier thresholds

established using Youden's J Statistics and F1

Maximization provided equal Sensitivity and Specificity

for the Classifier. Therefore, the XGBoost Model, being

calibrated, produced more Accurate Classification and

Actionable Probability per Triage Downstream.

3.5 External Hold-Out Validation With
Deucravacitinib
Translational robustness was assessed during the

validation of the clinically approved TYK2 inhibitor

Deucravacitinib by holding it out from training data

and testing it externally. The XGBoost model

successfully identified Deucravacitinib as an active

compound at a high probability score consistent with its

known activity profile. The reported pIC50 value of

Deucravacitinib is approximately 8-9. This result further

bolstered the pipeline's ability to generalize beyond

training scaffolds and capture clinically relevant

inhibitors.

Figure 4. “Chemical structures of Deucravacitinib and

two top novel candidates, annotated with experimental

pIC50 values. All three compounds were correctly

prioritized as high probability actives.”
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3.6 Prioritization Of Novel Candidates
Application of the calibrated classifier to the curated

dataset allowed identification of 32 compounds that

were prioritized with high predicted probabilities of

activity. Candidates for selection were chosen based on

their predicted activity, chemical diversity, and

suitability for docking. These molecules are structurally

novel scaffolds compared to the known TYK2 inhibitors

and expand the chemical space available for exploration.

Figure 5. “PCA projection (343D to 2D) of chemical
space. Gray: full curated dataset (n=9,962); red circles:

32 prioritized candidates; gold star: Deucravacitinib.

Explained variance: PC1 (12.3%), PC2(8.1%).”

3.7 Docking Validation
Molecular docking into the TYK2 catalytic site was

performed with the prioritized 32 candidates. The

validation of the docking protocol by redocking of the
reference ligands gave RMSD values within acceptable

thresholds. A number of candidates showed a docking

score comparable to, or even higher than, that

calculated for Deucravacitinib, supported by favorable

hydrogen-bonding and hydrophobic interactions in the

active site.

3.8 Final Shortlist And Key Findings
The pipeline returned a shortlist of high-confidence

TYK2 inhibitor candidates from docking. These

molecules exhibited not only favorable predicted

bioactivity but also stable binding poses and favorable

binding free energies in simulations. This pipeline

indeed managed to rediscover the active

Deucravacitinib while highlighting previously

unreported scaffolds, underlining both its validity and

potential for discovery.

4 Discussion
This work demonstrates the power of integrating

scaffold-aware machine learning with physics-based

validation for accelerating the discovery of TYK2

inhibitors. Among the models evaluated, the XGBoost

classifier consistently outperformed baselines using

SVM and Random Forest approaches with accuracy of
0.875, F1-score of 0.913, and ROC-AUC of 0.951

under stringent scaffold-split cross-validation. These

results serve to highlight the capability of gradient

boosting for modeling complex structure-activity

relationships while avoiding overfitting to scaffold bias,

a limitation that has undermined many prior

cheminformatics studies.

4.1 Comparison With Previous Studies
While some published TYK2 computational efforts

have relied on either docking-based screening or

traditional QSAR models trained with random data

splits, such studies often reported high nominal

accuracies but could not adequately address scaffold

leakage, leading to artificially inflated estimates of

performance. We confirm here that scaffold-aware

validation offers a more realistic measure of predictive

generalization, especially in the discovery of kinase

inhibitors where scaffold diversity is crucial. Moreover,

probability calibration and principled threshold
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optimization provided well-defined decision rules, a step

rarely implemented in earlier studies but highly relevant

for real-world application.

4.2 Biological And Translational Insights
In fact, it successfully rediscovered Deucravacitinib, a

clinically approved TYK2 inhibitor, as highly active,

thus validating its external predictive reliability. More

importantly, it prioritized 32 novel compounds with

distinct scaffolds that retained favorable docking scores

and stable binding in molecular dynamics simulations.

The persistence of hydrogen-bonding and hydrophobic

interactions along 100–300 ns trajectories supported by

favorable MM/GBSA free energies suggests that several

candidates may be suitable for experimental testing. The

ability to expand the chemical space of TYK2 inhibitors

beyond known inhibitors is a meaningful step towards

broadening therapeutic options in autoimmune disease

management.

Fig 6. “Novelty breakdown of the 32 prioritized
candidates: 3 are scaffold-novel (new Bemis-Murcko

chemotypes), while 29 are molecule-novel (new

compounds, knowns scaffolds). This balance supports

both exploratory discovery and lead optimization.”

4.3 Methodological Contributions
Beyond the case of TYK2, this study provides a

generalizable framework for kinase-focused drug
repurposing. We establish here a reproducible workflow

that can be systematically applied across other kinase

families by combining rigorous data curation, scaffold-

aware validation, calibrated machine learning models,

and physics-based docking and MD refinement. The

release of code, trained models, and curated datasets in

a transparent manner further strengthens

reproducibility, one of the critical yet often overlooked

factors in computational drug discovery.

5. Limitations
It's important to acknowledge some limitations of the

present work. One limitation is that ChEMBL data

introduces significant heterogeneity in the assay data

that cannot be completely eliminated through data

cleaning and standardization methods. Though

MM/GBSA scoring is useful for providing a ranking of
binding energy scoring, it remains an estimate of

binding energy and would fit the Bill better with the use

of higher fidelity free energy perturbation (FEP)

simulation methods to arrive at more exact estimates of

binding energy for compounds being considered in this

project. Also, as no experimental validation of the
compounds selected as priorities has been done, they

are still considered only theoretical predictions until

they can be confirmed through either in vitro or in vivo

experimentation. Finally, although XGBoost gave good

results, it is possible that future advances in the use of

Graph Neural Networks and foundation models for

chemistry may provide improvements in the ability to
learn representations of molecules and enhance

predictive accuracy.

6. Conclusion
We created and validated a machine learning pipeline

that takes into account the chemical structure of small

molecules (the "scaffold") to discover new TYK2

inhibitors, using accurate data curation, calibrated

XGBoost classification (accuracy = 0.875, area under the

curve = 0.951), and physics-based docking validation.
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We prioritized a total of 32 high-priority "active"

candidates from the XGBoost classifier output. Of these

candidates, three have novel scaffolds and 29 have novel

molecules. One of those three candidates is a clinical

drug called Deucravacitinib, which was one of the

highest active candidates, demonstrating the external

validity of our simulated model.

By incorporating both scaffold-split cross validation and

probability calibration into our work, we have reduced

the occurrence of data leakage and the miscalibration of

our predictions, both of which are common failings in

cheminformatics.

Finally, we have made available all Data, Models, and

Code to promote complete reproducibility of our work

and to provide a scalable and generalizable framework

for the use of artificial intelligence technology in the

design and development of small molecule inhibitors of

kinases, providing an inexpensive means to expand the

possible chemistry for future therapeutic agents

targeting autoimmune diseases and to speed up the

development of these agents for potential therapeutic

use.

7. Future Directions
In the future, we will be taking advantage of new

techniques in Active Learning, Quantifying Uncertainty,

and Transfer Learning using Large Chemical

Foundation Models to enhance generalization of the

models and reduce the occurrence of false positives.

Also, it will be necessary to develop a multi-target

modelling approach to assess the selectivity of

compounds against the entire JAK family of kinases due

to the potential risk of harms caused by off-target

inhibition. With the development of the previously

mentioned advances in the reproducible pipeline, in
combination with experimental assays, we foresee a

rapid and scalable pathway to the discovery of TYK2

inhibitors and additional uses of Kinase Drug

Repositioning.

Refrences

1. Minegishi, Y. and H. Karasuyama, Defects in

Jak–STAT-mediated cytokine signals cause hyper-IgE

syndrome: lessons from a primary immunodeficiency.
International immunology, 2009. 21(2): p. 105-

112.

2. O'Shea, J.J., et al., The JAK-STAT pathway:

impact on human disease and therapeutic

intervention. Annual review of medicine, 2015.

66(1): p. 311-328.

3. Watford, W.T., et al., Signaling by IL‐12 and

IL‐23 and the immunoregulatory roles of STAT4.

Immunological reviews, 2004. 202(1): p. 139-
156.

4. Dendrou, C.A., et al., Resolving TYK2 locus

genotype-to-phenotype differences in autoimmunity.
Science translational medicine, 2016. 8(363): p.
363ra149-363ra149.

5. Karaghiosoff, M., et al., Central role for type I

interferons and Tyk2 in lipopolysaccharide-induced

endotoxin shock. Nature immunology, 2003. 4(5):
p. 471-477.

6. Strober, B., et al., Deucravacitinib versus placebo

and apremilast in moderate to severe plaque psoriasis:

Efficacy and safety results from the 52-week,

randomized, double-blinded, phase 3 Program fOr

Evaluation of TYK2 inhibitor psoriasis second trial.
Journal of the American Academy of

Dermatology, 2023. 88(1): p. 40-51.

7. Yuan, S., et al., Mendelian randomization and

clinical trial evidence supports TYK2 inhibition as a

therapeutic target for autoimmune diseases.
EBioMedicine, 2023. 89.

8. Paul, S.M., et al., How to improve R&D

productivity: the pharmaceutical industry's grand

challenge. Nature reviews Drug discovery, 2010.
9(3): p. 203-214.

9. Lavecchia, A. and C. Di Giovanni, Virtual

screening strategies in drug discovery: a critical review.
Current medicinal chemistry, 2013. 20(23): p.
2839-2860.

10. Lenselink, E.B. and P.F. Stouten, Multitask

machine learning models for predicting lipophilicity

(logP) in the SAMPL7 challenge. Journal of
Computer-Aided Molecular Design, 2021. 35(8):
p. 901-909.

11. Gaulton, A., et al., The ChEMBL database in

2017. Nucleic acids research, 2017. 45(D1): p.

D945-D954.

https://portal.issn.org/resource/ISSN/3006-7030
https://portal.issn.org/resource/ISSN/3006-7030


ISSN (e) 3007-3138 (p) 3007-312X

https://sesjournal.com |Azhar et al., 2025 | Page 216

12. Fourches, D., E. Muratov, and A. Tropsha,

Trust, but verify II: a practical guide to

chemogenomics data curation. Journal of chemical

information and modeling, 2016. 56(7): p.

1243-1252.

13. Ramsundar, B., et al., Is multitask deep learning

practical for pharma? Journal of chemical

information and modeling, 2017. 57(8): p.

2068-2076.

14. Zeng, K., et al., Ualign: pushing the limit of

template-free retrosynthesis prediction with

unsupervised SMILES alignment. Journal of

Cheminformatics, 2024. 16(1): p. 80.

15. Niculescu-Mizil, A. and R. Caruana. Obtaining

Calibrated Probabilities from Boosting. in UAI.

2005.

16. Guo, C., et al. On calibration of modern neural

networks. in International conference on machine

learning. 2017. PMLR.

17. Deore, S., et al., 2-(3, 4-Dihydroxyphenyl)-5, 7-

Dihydroxy-4H-Chromen-4-One Flavones Based

Virtual Screening for Potential JAK Inhibitors in

Inflammatory Disorders. International Research

Journal of Multidisciplinary Scope (IRJMS),

2024. 5(1): p. 557-567.

18. Halder, A.K. and M.N.D. Cordeiro, Multi-target

in silico prediction of inhibitors for mitogen-activated

protein kinase-interacting kinases. Biomolecules,

2021. 11(11): p. 1670.

https://portal.issn.org/resource/ISSN/3006-7030
https://portal.issn.org/resource/ISSN/3006-7030

